64,335 results on '"A. Font"'
Search Results
2. Systematic Effects in Galaxy-Galaxy Lensing with DESI
- Author
-
Johannes Ulf Lange, C. Blake, C. Saulder, N. Jeffrey, J. DeRose, G. Beltz-Mohrmann, N. Emas, C. Garcia-Quintero, B. Hadzhiyska, S. Heydenreich, M. Ishak, S. Joudaki, E. Jullo, A. Krolewski, A. Leauthaud, L. Medina-Varela, A. Porredon, G. Rossi, R. Ruggeri, E. Xhakaj, S. Yuan, J. Aguilar, S. Ahlen, D. Brooks, T. Claybaugh, A. de la Macorra, P. Doel, K. Fanning, S. Ferraro, A. Font-Ribera, J. E. Forero-Romero, E. Gaztañaga, S. Gontcho A Gontcho, S. Juneau, R. Kehoe, T. Kisner, A. Kremin, M. Landriau, M. E. Levi, M. Manera, R. Miquel, J. Moustakas, E. Mueller, A. D. Myers, J. Nie, G. Niz, N. Palanque-Delabrouille, C. Poppett, M. Rezaie, E. Sanchez, M. Schubnell, H. Seo, J. Silber, D. Sprayberry, G. Tarlé, M. Vargas-Magaña, R. H. Wechsler, Z. Zhou, and H. Zou
- Subjects
Astronomy ,QB1-991 ,Astrophysics ,QB460-466 - Abstract
The Dark Energy Spectroscopic Instrument (DESI) survey will measure spectroscopic redshifts for millions of galaxies across roughly $14,000 \, \mathrm{deg}^2$ of the sky. Cross-correlating targets in the DESI survey with complementary imaging surveys allows us to measure and analyze shear distortions caused by gravitational lensing in unprecedented detail. In this work, we analyze a series of mock catalogs with ray-traced gravitational lensing and increasing sophistication to estimate systematic effects on galaxy-galaxy lensing estimators such as the tangential shear $\gamma_{\mathrm{t}}$ and the excess surface density $\Delta\Sigma$. We employ mock catalogs tailored to the specific imaging surveys overlapping with the DESI survey: the Dark Energy Survey (DES), the Hyper Suprime-Cam (HSC) survey, and the Kilo-Degree Survey (KiDS). Among others, we find that fiber incompleteness can have significant effects on galaxy-galaxy lensing estimators but can be corrected effectively by up-weighting DESI targets with fibers by the inverse of the fiber assignment probability. Similarly, we show that intrinsic alignment and lens magnification are expected to be statistically significant given the precision forecasted for the DESI year-1 data set. Our study informs several analysis choices for upcoming cross-correlation studies of DESI with DES, HSC, and KiDS.
- Published
- 2024
- Full Text
- View/download PDF
3. Correcting Turbulence-induced Errors in Fiber Positioning for the Dark Energy Spectroscopic Instrument
- Author
-
E. F. Schlafly, J. Guy, K. Honscheid, S. Kent, S. E. Koposov, J. Aguilar, S. Ahlen, S. Bailey, D. Brooks, T. Claybaugh, K. Dawson, P. Doel, K. Fanning, D. P. Finkbeiner, A. Font-Ribera, J. E. Forero-Romero, S. Gontcho A Gontcho, G. Gutierrez, D. Kirkby, T. Kisner, A. Kremin, M. Landriau, J. Lasker, L. Le Guillou, M. E. Levi, A. de la Macorra, P. Martini, A. Meisner, R. Miquel, J. Moustakas, G. Niz, F. Prada, G. Rossi, E. Sanchez, M. Schubnell, R. Sharples, D. Sprayberry, G. Tarlé, B. A. Weaver, H. Zou, and DESI
- Subjects
Spectroscopy ,Experimental techniques ,Astronomy ,QB1-991 - Abstract
Highly multiplexed, robotic, fiber-fed spectroscopic surveys are observing tens of millions of stars and galaxies. For many systems, accurate positioning relies on imaging the fibers in the focal plane and feeding that information back to the robotic positioners to correct their positions. Inhomogeneities and turbulence in the air between the focal plane and the imaging camera can affect the measured positions of fibers, limiting the accuracy with which fibers can be placed on targets. For the Dark Energy Spectroscopic Instrument, we dramatically reduced the effect of turbulence on measurements of positioner locations in the focal plane by taking advantage of stationary positioners and the correlation function of the turbulence. We were able to reduce positioning errors from 7.3 to 3.5 μ m, speeding the survey by 1.6% under typical conditions.
- Published
- 2024
- Full Text
- View/download PDF
4. Overview of the Fiber System for the Dark Energy Spectroscopic Instrument
- Author
-
Claire Poppett, Luke Tyas, J. Aguilar, Christopher Bebek, D. Bramall, T. Claybaugh, J. Edelstein, P. Fagrelius, H. Heetderks, P. Jelinsky, S. Jelinsky, Robin Lafever, A. Lambert, M. Lampton, Michael E. Levi, P. Martini, C. Rockosi, J. Schmoll, Ray M. Sharples, Martin Sirk, Edward Wishnow, Jiaxi Yu, S. Ahlen, A. Bault, S. BenZvi, D. Brooks, S. Cole, A. de la Macorra, Arjun Dey, P. Doel, K. Fanning, A. Font-Ribera, J. E. Forero-Romero, E. Gaztañaga, S. Gontcho A Gontcho, A. X. Gonzalez-Morales, C. Hahn, K. Honscheid, J. Jimenez, S. Juneau, D. Kirkby, A. Kremin, M. Landriau, L. Le Guillou, M. Manera, A. Meisner, R. Miquel, J. Moustakas, E. Mueller, A. Muñoz-Gutiérrez, A. D. Myers, J. Nie, G. Niz, N. Palanque-Delabrouille, W. J. Percival, F. Prada, D. Rabinowitz, M. Rezaie, G. Rossi, E. Sanchez, Edward F. Schlafly, D. Schlegel, M. Schubnell, H. Seo, D. Sprayberry, G. Tarlé, M. Vargas-Magaña, B. A. Weaver, and R. Zhou
- Subjects
Cosmological evolution ,Astronomical instrumentation ,Galaxy spectroscopy ,Astronomy ,QB1-991 - Abstract
The Dark Energy Spectroscopic Instrument (DESI) is a revolutionary instrument designed for precise measurements of cosmic distances and the investigation of dark energy. DESI utilizes 5000 optical fibers to simultaneously measure the spectra of distant objects and aims to measure 40 million galaxies and quasars in a 5 yr survey. One of the critical challenges to DESI’s success was ensuring that the fiber system was not only highly efficient but also delivered a highly stable beam enabling more reliable sky subtraction for measurements of faint objects. We achieved this stability by minimizing the stress on the fiber system during the manufacture and operation of the telescope and fiber positioning robots. We installed the DESI fiber system on the 4 m Mayall telescope with ≥99% of fibers intact, and the instrument has delivered superb optical performance throughout the initial years of the DESI survey, including ≥90% average throughput when injected with a focal ratio of ∼ f /3.9 as delivered by the primary focus corrector, excluding fiber absorption losses. The design of DESI required multiple innovations to achieve these requirements, such as cleaved fibers bonded with a UV-curing epoxy to glass ferrules in the focal plane and fusion splicing instead of physical connectors. In this paper, we describe the development, delivery, and installation of the fiber system, the innovations that made the state-of-the-art performance possible, and the key lessons learned that could benefit future projects.
- Published
- 2024
- Full Text
- View/download PDF
5. The Early Data Release of the Dark Energy Spectroscopic Instrument
- Author
-
DESI Collaboration, A. G. Adame, J. Aguilar, S. Ahlen, S. Alam, G. Aldering, D. M. Alexander, R. Alfarsy, C. Allende Prieto, M. Alvarez, O. Alves, A. Anand, F. Andrade-Oliveira, E. Armengaud, J. Asorey, S. Avila, A. Aviles, S. Bailey, A. Balaguera-Antolínez, O. Ballester, C. Baltay, A. Bault, J. Bautista, J. Behera, S. F. Beltran, S. BenZvi, L. Beraldo e Silva, J. R. Bermejo-Climent, A. Berti, R. Besuner, F. Beutler, D. Bianchi, C. Blake, R. Blum, A. S. Bolton, S. Brieden, A. Brodzeller, D. Brooks, Z. Brown, E. Buckley-Geer, E. Burtin, L. Cabayol-Garcia, Z. Cai, R. Canning, L. Cardiel-Sas, A. Carnero Rosell, F. J. Castander, J. L. Cervantes-Cota, S. Chabanier, E. Chaussidon, J. Chaves-Montero, S. Chen, X. Chen, C. Chuang, T. Claybaugh, S. Cole, A. P. Cooper, A. Cuceu, T. M. Davis, K. Dawson, R. de Belsunce, R. de la Cruz, A. de la Macorra, J. Della Costa, A. de Mattia, R. Demina, U. Demirbozan, J. DeRose, A. Dey, B. Dey, G. Dhungana, J. Ding, Z. Ding, P. Doel, R. Doshi, K. Douglass, A. Edge, S. Eftekharzadeh, D. J. Eisenstein, A. Elliott, J. Ereza, S. Escoffier, P. Fagrelius, X. Fan, K. Fanning, V. A. Fawcett, S. Ferraro, B. Flaugher, A. Font-Ribera, J. E. Forero-Romero, D. Forero-Sánchez, C. S. Frenk, B. T. Gänsicke, L. Á. García, J. García-Bellido, C. Garcia-Quintero, L. H. Garrison, H. Gil-Marín, J. Golden-Marx, S. Gontcho A Gontcho, A. X. Gonzalez-Morales, V. Gonzalez-Perez, C. Gordon, O. Graur, D. Green, D. Gruen, J. Guy, B. Hadzhiyska, C. Hahn, J. J. Han, M. M. S Hanif, H. K. Herrera-Alcantar, K. Honscheid, J. Hou, C. Howlett, D. Huterer, V. Iršič, M. Ishak, A. Jacques, A. Jana, L. Jiang, J. Jimenez, Y. P. Jing, S. Joudaki, R. Joyce, E. Jullo, S. Juneau, N. G. Karaçaylı, T. Karim, R. Kehoe, S. Kent, A. Khederlarian, S. Kim, D. Kirkby, T. Kisner, F. Kitaura, N. Kizhuprakkat, J. Kneib, S. E. Koposov, A. Kovács, A. Kremin, A. Krolewski, B. L’Huillier, O. Lahav, A. Lambert, C. Lamman, T.-W. Lan, M. Landriau, D. Lang, J. U. Lange, J. Lasker, A. Leauthaud, L. Le Guillou, M. E. Levi, T. S. Li, E. Linder, A. Lyons, C. Magneville, M. Manera, C. J. Manser, D. Margala, P. Martini, P. McDonald, G. E. Medina, L. Medina-Varela, A. Meisner, J. Mena-Fernández, J. Meneses-Rizo, M. Mezcua, R. Miquel, P. Montero-Camacho, J. Moon, S. Moore, J. Moustakas, E. Mueller, J. Mundet, A. Muñoz-Gutiérrez, A. D. Myers, S. Nadathur, L. Napolitano, R. Neveux, J. A. Newman, J. Nie, R. Nikutta, G. Niz, P. Norberg, H. E. Noriega, E. Paillas, N. Palanque-Delabrouille, A. Palmese, Z. Pan, D. Parkinson, S. Penmetsa, W. J. Percival, A. Pérez-Fernández, I. Pérez-Ràfols, M. Pieri, C. Poppett, A. Porredon, S. Pothier, F. Prada, R. Pucha, A. Raichoor, C. Ramírez-Pérez, S. Ramirez-Solano, M. Rashkovetskyi, C. Ravoux, A. Rocher, C. Rockosi, A. J. Ross, G. Rossi, R. Ruggeri, V. Ruhlmann-Kleider, C. G. Sabiu, K. Said, A. Saintonge, L. Samushia, E. Sanchez, C. Saulder, E. Schaan, E. F. Schlafly, D. Schlegel, D. Scholte, M. Schubnell, H. Seo, A. Shafieloo, R. Sharples, W. Sheu, J. Silber, F. Sinigaglia, M. Siudek, Z. Slepian, A. Smith, M. T. Soumagnac, D. Sprayberry, L. Stephey, J. Suárez-Pérez, Z. Sun, T. Tan, G. Tarlé, R. Tojeiro, L. A. Ureña-López, R. Vaisakh, D. Valcin, F. Valdes, M. Valluri, M. Vargas-Magaña, A. Variu, L. Verde, M. Walther, B. Wang, M. S. Wang, B. A. Weaver, N. Weaverdyck, R. H. Wechsler, M. White, Y. Xie, J. Yang, C. Yèche, J. Yu, S. Yuan, H. Zhang, Z. Zhang, C. Zhao, Z. Zheng, R. Zhou, Z. Zhou, H. Zou, S. Zou, and Y. Zu
- Subjects
Astronomy data reduction ,Observational cosmology ,Astronomy databases ,Astronomy data analysis ,Astronomy software ,Surveys ,Astronomy ,QB1-991 - Abstract
The Dark Energy Spectroscopic Instrument (DESI) completed its 5 month Survey Validation in 2021 May. Spectra of stellar and extragalactic targets from Survey Validation constitute the first major data sample from the DESI survey. This paper describes the public release of those spectra, the catalogs of derived properties, and the intermediate data products. In total, the public release includes good-quality spectral information from 466,447 objects targeted as part of the Milky Way Survey, 428,758 as part of the Bright Galaxy Survey, 227,318 as part of the Luminous Red Galaxy sample, 437,664 as part of the Emission Line Galaxy sample, and 76,079 as part of the Quasar sample. In addition, the release includes spectral information from 137,148 objects that expand the scope beyond the primary samples as part of a series of secondary programs. Here, we describe the spectral data, data quality, data products, Large-Scale Structure science catalogs, access to the data, and references that provide relevant background to using these spectra.
- Published
- 2024
- Full Text
- View/download PDF
6. Validation of the Scientific Program for the Dark Energy Spectroscopic Instrument
- Author
-
DESI Collaboration, A. G. Adame, J. Aguilar, S. Ahlen, S. Alam, G. Aldering, D. M. Alexander, R. Alfarsy, C. Allende Prieto, M. Alvarez, O. Alves, A. Anand, F. Andrade-Oliveira, E. Armengaud, J. Asorey, S. Avila, A. Aviles, S. Bailey, A. Balaguera-Antolínez, O. Ballester, C. Baltay, A. Bault, J. Bautista, J. Behera, S. F. Beltran, S. BenZvi, L. Beraldo e Silva, J. R. Bermejo-Climent, A. Berti, R. Besuner, F. Beutler, D. Bianchi, C. Blake, R. Blum, A. S. Bolton, S. Brieden, A. Brodzeller, D. Brooks, Z. Brown, E. Buckley-Geer, E. Burtin, L. Cabayol-Garcia, Z. Cai, R. Canning, L. Cardiel-Sas, A. Carnero Rosell, F. J. Castander, J. L. Cervantes-Cota, S. Chabanier, E. Chaussidon, J. Chaves-Montero, S. Chen, X. Chen, C. Chuang, T. Claybaugh, S. Cole, A. P. Cooper, A. Cuceu, T. M. Davis, K. Dawson, R. de Belsunce, R. de la Cruz, A. de la Macorra, A. de Mattia, R. Demina, U. Demirbozan, J. DeRose, A. Dey, B. Dey, G. Dhungana, J. Ding, Z. Ding, P. Doel, R. Doshi, K. Douglass, A. Edge, S. Eftekharzadeh, D. J. Eisenstein, A. Elliott, S. Escoffier, P. Fagrelius, X. Fan, K. Fanning, V. A. Fawcett, S. Ferraro, J. Ereza, B. Flaugher, A. Font-Ribera, D. Forero-Sánchez, J. E. Forero-Romero, C. S. Frenk, B. T. Gänsicke, L. Á. García, J. García-Bellido, C. Garcia-Quintero, L. H. Garrison, H. Gil-Marín, J. Golden-Marx, S. Gontcho A Gontcho, A. X. Gonzalez-Morales, V. Gonzalez-Perez, C. Gordon, O. Graur, D. Green, D. Gruen, J. Guy, B. Hadzhiyska, C. Hahn, J. J. Han, M. M. S Hanif, H. K. Herrera-Alcantar, K. Honscheid, J. Hou, C. Howlett, D. Huterer, V. Iršič, M. Ishak, A. Jana, L. Jiang, J. Jimenez, Y. P. Jing, S. Joudaki, E. Jullo, R. Joyce, S. Juneau, N. Kizhuprakkat, N. G. Karaçaylı, T. Karim, R. Kehoe, S. Kent, A. Khederlarian, S. Kim, D. Kirkby, T. Kisner, F. Kitaura, J. Kneib, S. E. Koposov, A. Kovács, A. Kremin, A. Krolewski, B. L’Huillier, O. Lahav, A. Lambert, C. Lamman, T.-W. Lan, M. Landriau, D. Lang, J. U. Lange, J. Lasker, L. Le Guillou, A. Leauthaud, M. E. Levi, T. S. Li, E. Linder, A. Lyons, C. Magneville, M. Manera, C. J. Manser, D. Margala, P. Martini, P. McDonald, G. E. Medina, L. Medina-Varela, A. Meisner, J. Mena-Fernández, J. Meneses-Rizo, M. Mezcua, R. Miquel, P. Montero-Camacho, J. Moon, S. Moore, J. Moustakas, E. Mueller, J. Mundet, A. Muñoz-Gutiérrez, A. D. Myers, S. Nadathur, L. Napolitano, R. Neveux, J. A. Newman, J. Nie, G. Niz, P. Norberg, H. E. Noriega, E. Paillas, N. Palanque-Delabrouille, A. Palmese, P. Zhiwei, D. Parkinson, S. Penmetsa, W. J. Percival, A. Pérez-Fernández, I. Pérez-Ràfols, M. Pieri, C. Poppett, A. Porredon, F. Prada, R. Pucha, A. Raichoor, C. Ramírez-Pérez, S. Ramirez-Solano, M. Rashkovetskyi, C. Ravoux, A. Rocher, C. Rockosi, A. J. Ross, G. Rossi, R. Ruggeri, V. Ruhlmann-Kleider, C. G. Sabiu, K. Said, A. Saintonge, L. Samushia, E. Sanchez, C. Saulder, E. Schaan, E. F. Schlafly, D. Schlegel, D. Scholte, M. Schubnell, H. Seo, A. Shafieloo, R. Sharples, W. Sheu, J. Silber, F. Sinigaglia, M. Siudek, Z. Slepian, A. Smith, D. Sprayberry, L. Stephey, J. Suárez-Pérez, Z. Sun, T. Tan, G. Tarlé, R. Tojeiro, L. A. Ureña-López, R. Vaisakh, D. Valcin, F. Valdes, M. Valluri, M. Vargas-Magaña, A. Variu, L. Verde, M. Walther, B. Wang, M. S. Wang, B. A. Weaver, N. Weaverdyck, R. H. Wechsler, M. White, Y. Xie, J. Yang, C. Yèche, J. Yu, S. Yuan, H. Zhang, Z. Zhang, C. Zhao, Z. Zheng, R. Zhou, Z. Zhou, H. Zou, S. Zou, and Y. Zu
- Subjects
Cosmology ,Redshift surveys ,Astronomy ,QB1-991 - Abstract
The Dark Energy Spectroscopic Instrument (DESI) was designed to conduct a survey covering 14,000 deg ^2 over 5 yr to constrain the cosmic expansion history through precise measurements of baryon acoustic oscillations (BAO). The scientific program for DESI was evaluated during a 5 month survey validation (SV) campaign before beginning full operations. This program produced deep spectra of tens of thousands of objects from each of the stellar Milky Way Survey (MWS), Bright Galaxy Survey (BGS), luminous red galaxy (LRG), emission line galaxy (ELG), and quasar target classes. These SV spectra were used to optimize redshift distributions, characterize exposure times, determine calibration procedures, and assess observational overheads for the 5 yr program. In this paper, we present the final target selection algorithms, redshift distributions, and projected cosmology constraints resulting from those studies. We also present a One-Percent Survey conducted at the conclusion of SV covering 140 deg ^2 using the final target selection algorithms with exposures of a depth typical of the main survey. The SV indicates that DESI will be able to complete the full 14,000 deg ^2 program with spectroscopically confirmed targets from the MWS, BGS, LRG, ELG, and quasar programs with total sample sizes of 7.2, 13.8, 7.46, 15.7, and 2.87 million, respectively. These samples will allow exploration of the Milky Way halo, clustering on all scales, and BAO measurements with a statistical precision of 0.28% over the redshift interval z < 1.1, 0.39% over the redshift interval 1.1 < z < 1.9, and 0.46% over the redshift interval 1.9 < z < 3.5.
- Published
- 2024
- Full Text
- View/download PDF
7. Foreign Language Teacher's Attitudes towards a Pre-Designed Language Learning System
- Author
-
Roxana Rebolledo Font de la Vall and Candy Veas Faundez
- Abstract
Once the pandemic concluded, the Foreign Languages Department of a Chilean state university hired a Canadian company to implement a pre-designed language learning system (PLLS). This platform was to be used by all teachers and students, as it contained various activities to develop all four language skills, including pronunciation practice through AI-based voice recognition. This study explores the attitudes of 17 university teachers towards using these pre-elaborated resources, activities, and assessments in their communicative English and German courses. A mixed-method approach was used, involving a survey based on the Technology Adoption Model (TAM) and individual interviews. Descriptive statistics were obtained from the survey responses, and qualitative data were analysed using content analysis techniques. The results indicate that teachers' attitudes towards the PLLS were generally neutral to negative. Instructors expressed their concerns about the system's pre-designed content and perceived functionality. Perceived ease of use and usefulness were rated low, reporting difficulties in navigation and alignment with their teaching styles. Perceived enjoyment received the lowest rating, mentioning issues such as disconnected content and lack of progressive structure. Qualitative data revealed technical problems, increased workload, and concerns about the system's impact on student motivation and learning outcomes. While some positive aspects were noted, the overall attitude towards the PLLS was predominantly negative, highlighting the need for better alignment with pedagogical goals and improved implementation strategies.
- Published
- 2024
8. NRSurNN3dq4: A Deep Learning Powered Numerical Relativity Surrogate for Binary Black Hole Waveforms
- Author
-
Freitas, Osvaldo Gramaxo, Theodoropoulos, Anastasios, Villanueva, Nino, Fernandes, Tiago, Nunes, Solange, Font, José A., Onofre, Antonio, Torres-Forné, Alejandro, and Martin-Guerrero, José D.
- Subjects
General Relativity and Quantum Cosmology ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Instrumentation and Methods for Astrophysics ,Computer Science - Machine Learning - Abstract
Gravitational wave approximants are widely used tools in gravitational-wave astronomy. They allow for dense coverage of the parameter space of binary black hole (BBH) mergers for purposes of parameter inference, or, more generally, match filtering tasks, while avoiding the computationally expensive full evolution of numerical relativity simulations. However, this comes at a slight cost in terms of accuracy when compared to numerical relativity waveforms, depending on the approach. One way to minimize this is by constructing so-called~\textit{surrogate models} which, instead of using approximate physics or phenomenological formulae, rather interpolate within the space of numerical relativity waveforms. In this work, we introduce~\texttt{NRSurNN3dq4}, a surrogate model for non-precessing BBH merger waveforms powered by neural networks. By relying on the power of deep learning, this approximant is remarkably fast and competitively accurate, as it can generate millions of waveforms in a tenth of a second, while mismatches with numerical relativity waveforms are restrained below $10^{-3}$. We implement this approximant within the~\textsc{bilby} framework for gravitational-wave parameter inference, and show that it it is suitable for parameter estimation tasks.
- Published
- 2024
9. Parameter estimation of microlensed gravitational waves with Conditional Variational Autoencoders
- Author
-
Nerin, Roberto Bada, Bulashenko, Oleg, Freitas, Osvaldo Gramaxo, and Font, José A.
- Subjects
General Relativity and Quantum Cosmology ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
Gravitational lensing of gravitational waves (GWs) provides a unique opportunity to study cosmology and astrophysics at multiple scales. Detecting microlensing signatures, in particular, requires efficient parameter estimation methods due to the high computational cost of traditional Bayesian inference. In this paper we explore the use of deep learning, namely Conditional Variational Autoencoders (CVAE), to estimate parameters of microlensed binary black hole (simulated) waveforms. We find that our CVAE model yields accurate parameter estimation and significant computational savings compared to Bayesian methods such as bilby (up to five orders of magnitude faster inferences). Moreover, the incorporation of CVAE-generated priors in bilby reduces the average runtime of the latter in about 48% with no penalty on its accuracy. Our results suggest that a CVAE model is a promising tool for future low-latency searches of lensed signals. Further applications to actual signals and integration with advanced pipelines could help extend the capabilities of GW observatories in detecting microlensing events.
- Published
- 2024
10. Extensive analysis of reconstruction algorithms for DESI 2024 baryon acoustic oscillations
- Author
-
Chen, X., Ding, Z., Paillas, E., Nadathur, S., Seo, H., Chen, S., Padmanabhan, N., White, M., de Mattia, A., McDonald, P., Ross, A. J., Variu, A., Rosell, A. Carnero, Hadzhiyska, B., Hanif, M. M. S, Forero-Sánchez, D., Ahlen, S., Alves, O., Andrade, U., BenZvi, S., Bianchi, D., Brooks, D., Chaussidon, E., Claybaugh, T., de la Macorra, A., Dey, Biprateep, Fanning, K., Ferraro, S., Font-Ribera, A., Forero-Romero, J. E., Garcia-Quintero, C., Gaztañaga, E., Gontcho, S. Gontcho A, Gutierrez, G., Hahn, C., Honscheid, K., Juneau, S., Kehoe, R., Kirkby, D., Kisner, T., Kremin, A., Levi, M. E., Meisner, A., Mena-Fernández, J., Miquel, R., Moustakas, J., Muñoz-Gutiérrez, A., Nikakhtar, F., Palanque-Delabrouille, N., Percival, W. J., Prada, F., Pérez-Ràfols, I., Rashkovetskyi, M., Rossi, G., Ruggeri, R., Sanchez, E., Saulder, C., Schlegel, D., Schubnell, M., Smith, A., Sprayberry, D., Tarlé, G., Valcin, D., Vargas-Magaña, M., Weaver, B. A., Yuan, S., and Zhou, R.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Reconstruction of the baryon acoustic oscillation (BAO) signal has been a standard procedure in BAO analyses over the past decade and has helped to improve the BAO parameter precision by a factor of ~2 on average. The Dark Energy Spectroscopic Instrument (DESI) BAO analysis for the first year (DR1) data uses the ``standard'' reconstruction framework, in which the displacement field is estimated from the observed density field by solving the linearized continuity equation in redshift space, and galaxy and random positions are shifted in order to partially remove nonlinearities. There are several approaches to solving for the displacement field in real survey data, including the multigrid (MG), iterative Fast Fourier Transform (iFFT), and iterative Fast Fourier Transform particle (iFFTP) algorithms. In this work, we analyze these algorithms and compare them with various metrics including two-point statistics and the displacement itself using realistic DESI mocks. We focus on three representative DESI samples, the emission line galaxies (ELG), quasars (QSO), and the bright galaxy sample (BGS), which cover the extreme redshifts and number densities, and potential wide-angle effects. We conclude that the MG and iFFT algorithms agree within 0.4% in post-reconstruction power spectrum on BAO scales with the RecSym convention, which does not remove large-scale redshift space distortions (RSDs), in all three tracers. The RecSym convention appears to be less sensitive to displacement errors than the RecIso convention, which attempts to remove large-scale RSDs. However, iFFTP deviates from the first two; thus, we recommend against using iFFTP without further development. In addition, we provide the optimal settings for reconstruction for five years of DESI observation. The analyses presented in this work pave the way for DESI DR1 analysis as well as future BAO analyses., Comment: 51 pages, 28 figures. Supporting publication of DESI 2024 III: Baryon Acoustic Oscillations from Galaxies and Quasars
- Published
- 2024
11. Constraining primordial non-Gaussianity with DESI 2024 LRG and QSO samples
- Author
-
Chaussidon, E., Yèche, C., de Mattia, A., Payerne, C., McDonald, P., Ross, A. J., Ahlen, S., Bianchi, D., Brooks, D., Burtin, E., Claybaugh, T., de la Macorra, A., Doel, P., Ferraro, S., Font-Ribera, A., Forero-Romero, J. E., Gaztañaga, E., Gil-Marín, H., Gontcho, S. Gontcho A, Gutierrez, G., Guy, J., Honscheid, K., Howlett, C., Huterer, D., Kehoe, R., Kirkby, D., Kisner, T., Kremin, A., Guillou, L. Le, Levi, M. E., Manera, M., Meisner, A., Miquel, R., Moustakas, J., Newman, J. A., Niz, G., Palanque-Delabrouille, N., Percival, W. J., Prada, F., Pérez-Ràfols, I., Ravoux, C., Rossi, G., Sanchez, E., Schlegel, D., Schubnell, M., Seo, H., Sprayberry, D., Tarlé, G., Vargas-Magaña, M., Weaver, B. A., Zhao, C., and Zou, H.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We analyse the large-scale clustering of the Luminous Red Galaxy (LRG) and Quasar (QSO) sample from the first data release (DR1) of the Dark Energy Spectroscopic Instrument (DESI). In particular, we constrain the primordial non-Gaussianity (PNG) parameter $f_{\rm NL}^{\rm loc}$ via the large-scale scale-dependent bias in the power spectrum using $1,631,716$ LRGs ($0.6 < z < 1.1$) and $1,189,129$ QSOs ($0.8 < z < 3.1$). This new measurement takes advantage of the enormous statistical power at large scales of DESI DR1 data, surpassing the latest data release (DR16) of the extended Baryon Oscillation Spectroscopic Survey (eBOSS). For the first time in this kind of analysis, we use a blinding procedure to mitigate the risk of confirmation bias in our results. We improve the model of the radial integral constraint proposing an innovative correction of the window function. We also carefully test the mitigation of the dependence of the target selection on the photometry qualities by incorporating an angular integral constraint contribution to the window function, and validate our methodology with the blinded data. Finally, combining the two samples, we measure $f_{\rm NL}^{\rm loc} = {-3.6}_{-9.1}^{+9.0}$ at $68\%$ confidence, where we assume the universality relation for the LRG sample and a recent merger model for the QSO sample about the response of bias to primordial non-Gaussianity. Adopting the universality relation for the PNG bias in the QSO analysis leads to $f_{\rm NL}^{\rm loc} = 3.5_{-7.4}^{+10.7}$ at $68\%$ confidence. This measurement is the most precise determination of primordial non-Gaussianity using large-scale structure to date, surpassing the latest result from eBOSS by a factor of $2.3$.
- Published
- 2024
12. A Sound Horizon-Free Measurement of $H_0$ in DESI 2024
- Author
-
Zaborowski, E. A., Taylor, P., Honscheid, K., Cuceu, A., de Mattia, A., Huterer, D., Krolewski, A., Martini, P., Ross, A. J., To, C., Torres, A., Ahlen, S., Bianchi, D., Brooks, D., Buckley-Geer, E., Burtin, E., Claybaugh, T., Cole, S., de la Macorra, A., Dey, Arjun, Dey, Biprateep, Doel, P., Ferraro, S., Font-Ribera, A., Forero-Romero, J. E., Gaztañaga, E., Gil-Marín, H., Gutierrez, G., Guy, J., Hahn, C., Howlett, C., Juneau, S., Kehoe, R., Kirkby, D., Kisner, T., Kremin, A., Landriau, M., Guillou, L. Le, Levi, M. E., Magneville, C., Meisner, A., Miquel, R., Moustakas, J., Palanque-Delabrouille, N., Percival, W. J., Prada, F., Pérez-Ràfols, I., Rossi, G., Sanchez, E., Schlegel, D., Schubnell, M., Seo, H., Sprayberry, D., Tarlé, G., Weaver, B. A., and Wechsler, R. H.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The physical size of the sound horizon at recombination is a powerful source of information for early-time measurements of the Hubble constant $H_0$, and many proposed solutions to the Hubble tension therefore involve modifications to this scale. In light of this, there has been growing interest in measuring $H_0$ independently of the sound horizon. We present the first such measurement to use data from the Dark Energy Spectroscopic Instrument (DESI), jointly analyzing the full-shape galaxy power spectra of DESI luminous red galaxies, emission line galaxies, quasars, and the bright galaxy sample, in a total of six redshift bins. Information from the sound horizon scale is removed from our constraints via a rescaling procedure at the power spectrum level, with our sound horizon-marginalized measurement being driven instead primarily by the matter-radiation equality scale. This measurement is then combined with additional sound horizon-free information from Planck+ACT CMB lensing, uncalibrated type Ia supernovae, and the DESI Lyman-$\alpha$ forest. We agnostically combine with the DESY5, Pantheon+, and Union3 supernova datasets, with our tightest respective constraints being $H_0=66.7^{+1.7}_{-1.9},~67.9^{+1.9}_{-2.1},$ and $67.8^{+2.0}_{-2.2}$ km s-1 Mpc-1. This corresponds to a sub-3% sound horizon-free constraint of the Hubble constant, and is the most precise measurement of its kind to date. Even without including information from the sound horizon, our measurement is still in 2.2-3.0$\sigma$ tension with SH0ES. Additionally, the consistency between our result and other measurements that do rely on the sound horizon scale provides no evidence for new early-Universe physics (e.g. early dark energy). Future DESI data releases will allow unprecedented measurements of $H_0$ and place strong constraints on models that use beyond-$\Lambda$CDM physics to ameliorate the Hubble tension., Comment: 17+7 pages; 5 figures. Submitted to JCAP
- Published
- 2024
13. Window convolution of the galaxy clustering bispectrum
- Author
-
Wang, Mike Shengbo, Beutler, Florian, Aguilar, J., Ahlen, S., Bianchi, D., Brooks, D., Claybaugh, T., de la Macorra, A., Doel, P., Font-Ribera, A., Gaztañaga, E., Gutierrez, G., Honscheid, K., Howlett, C., Kirkby, D., Lambert, A., Landriau, M., Miquel, R., Niz, G., Prada, F., Pérez-Ràfols, I., Rossi, G., Sanchez, E., Schlegel, D., Schubnell, M., Sprayberry, D., Tarlé, G., and Weaver, B. A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
In galaxy survey analysis, the observed clustering statistics do not directly match theoretical predictions but rather have been processed by a window function that arises from the survey geometry including the sky footprint, redshift-dependent background number density and systematic weights. While window convolution of the power spectrum is well studied, for the bispectrum with a larger number of degrees of freedom, it poses a significant numerical and computational challenge. In this work, we consider the effect of the survey window in the tripolar spherical harmonic decomposition of the bispectrum and lay down a formal procedure for their convolution via a series expansion of configuration-space three-point correlation functions, which was first proposed by Sugiyama et al. (2019). We then provide a linear algebra formulation of the full window convolution, where an unwindowed bispectrum model vector can be directly premultiplied by a window matrix specific to each survey geometry. To validate the pipeline, we focus on the Dark Energy Spectroscopic Instrument (DESI) Data Release 1 (DR1) luminous red galaxy (LRG) sample in the South Galactic Cap (SGC) in the redshift bin $0.4 \leqslant z \leqslant 0.6$. We first perform convergence checks on the measurement of the window function from discrete random catalogues, and then investigate the convergence of the window convolution series expansion truncated at a finite of number of terms as well as the performance of the window matrix. This work highlights the differences in window convolution between the power spectrum and bispectrum, and provides a streamlined pipeline for the latter for current surveys such as DESI and the Euclid mission., Comment: 30 pages, 12 figures, for submission to JCAP
- Published
- 2024
14. Modified Gravity Constraints from the Full Shape Modeling of Clustering Measurements from DESI 2024
- Author
-
Ishak, M., Pan, J., Calderon, R., Lodha, K., Valogiannis, G., Aviles, A., Niz, G., Yi, L., Zheng, C., Garcia-Quintero, C., de Mattia, A., Medina-Varela, L., Cervantes-Cota, J. L., Andrade, U., Huterer, D., Noriega, H. E., Zhao, G., Shafieloo, A., Fang, W., Ahlen, S., Bianchi, D., Brooks, D., Burtin, E., Chaussidon, E., Claybaugh, T., Cole, S., de la Macorra, A., Dey, Arjun, Fanning, K., Ferraro, S., Font-Ribera, A., Forero-Romero, J. E., Gaztañaga, E., Gil-Marín, H., Gutierrez, G., Hahn, C., Honscheid, K., Howlett, C., Juneau, S., Kirkby, D., Kisner, T., Kremin, A., Landriau, M., Guillou, L. Le, Leauthaud, A., Levi, M. E., Meisner, A., Miquel, R., Moustakas, J., Newman, J. A., Palanque-Delabrouille, N., Percival, W. J., Poppett, C., Prada, F., Pérez-Ràfols, I., Ross, A. J., Rossi, G., Sanchez, E., Schlegel, D., Schubnell, M., Seo, H., Sprayberry, D., Tarlé, G., Vargas-Magana, M., Weaver, B. A., Wechsler, R. H., Yèche, C., Zarrouk, P., Zhou, R., and Zou, H.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present cosmological constraints on deviations from general relativity (GR) from the first-year of clustering observations from the Dark Energy Spectroscopic Instrument (DESI) in combination with other datasets. We first consider the $\mu(a,k)$-$\Sigma(a,k)$ modified gravity (MG) parametrization (as well as $\eta(a,k)$) in flat $\Lambda$CDM and $w_0 w_a$CDM backgrounds. Using a functional form for time-only evolution gives $\mu_0= 0.11^{+0.44}_{-0.54}$ from DESI(FS+BAO)+BBN and a wide prior on $n_{s}$. Using DESI(FS+BAO)+CMB+DESY3+DESY5-SN, we obtain $\mu_0 = 0.05\pm 0.22$ and $\Sigma_0 = 0.009\pm 0.045$ in the $\Lambda$CDM background. In $w_0 w_a$CDM, we obtain $\mu_0 =-0.24^{+0.32}_{-0.28}$ and $\Sigma_0 = 0.006\pm 0.043$, consistent with GR, and we still find a preference of the data for dynamical dark energy with $w_0>-1$ and $w_a<0$. We then use binned forms in the two backgrounds starting with two bins in redshift and then combining them with two bins in scale for a total of 4 and 8 MG parameters, respectively. All MG parameters are found consistent with GR. We also find that the tension reported for $\Sigma_0$ with GR when using Planck PR3 goes away when we use the recent LoLLiPoP+HiLLiPoP likelihoods. As noted previously, this seems to indicate that the tension is related to the CMB lensing anomaly in PR3 which is also alleviated when using these likelihoods. We then constrain the class of Horndeski theory in the effective field theory of dark energy. We consider both EFT-basis and $\alpha$-basis. Assuming a power law parametrization for the function $\Omega$, which controls non-minimal coupling, we obtain $\Omega_0 = 0.0120^{+0.0021}_{-0.013}$ and $s_0 = 0.99^{+0.54}_{-0.20}$ from DESI(FS+BAO)+DESY5SN+CMB in a $\Lambda$CDM background. Similar results are obtained when using the $\alpha$-basis, where we constrain $c_M<1.24$, and are all consistent with GR. [Abridged.], Comment: 52 pages, 10 figures. This DESI Collaboration Publication is part of the 2024 publication series using the first year of observations (see https://data.desi.lbl.gov/doc/papers/)
- Published
- 2024
15. Characterization of DESI fiber assignment incompleteness effect on 2-point clustering and mitigation methods for DR1 analysis
- Author
-
Bianchi, D., Hanif, M. M. S, Rosell, A. Carnero, Lasker, J., Ross, A. J., Pinon, M., de Mattia, A., White, M., Ahlen, S., Bailey, S., Brooks, D., Burtin, E., Chaussidon, E., Claybaugh, T., Cole, S., de la Macorra, A., Ferraro, S., Font-Ribera, A., Forero-Romero, J. E., Gaztañaga, E., Gontcho, S. Gontcho A, Gutierrez, G., Guy, J., Hahn, C., Honscheid, K., Howlett, C., Juneau, S., Kirkby, D., Kisner, T., Kremin, A., Landriau, M., Guillou, L. Le, Levi, M. E., McDonald, P., Meisner, A., Miquel, R., Moustakas, J., Palanque-Delabrouille, N., Percival, W. J., Prada, F., Pérez-Ràfols, I., Raichoor, A., Rossi, G., Sanchez, E., Schlegel, D., Schubnell, M., Sharples, R., Silber, J., Sprayberry, D., Tarlé, G., Vargas-Magaña, M., Weaver, B. A., Zarrouk, P., Zhou, R., and Zou, H.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present an in-depth analysis of the fiber assignment incompleteness in the Dark Energy Spectroscopic Instrument (DESI) Data Release 1 (DR1). This incompleteness is caused by the restricted mobility of the robotic fiber positioner in the DESI focal plane, which limits the number of galaxies that can be observed at the same time, especially at small angular separations. As a result, the observed clustering amplitude is suppressed in a scale-dependent manner, which, if not addressed, can severely impact the inference of cosmological parameters. We discuss the methods adopted for simulating fiber assignment on mocks and data. In particular, we introduce the fast fiber assignment (FFA) emulator, which was employed to obtain the power spectrum covariance adopted for the DR1 full-shape analysis. We present the mitigation techniques, organised in two classes: measurement stage and model stage. We then use high fidelity mocks as a reference to quantify both the accuracy of the FFA emulator and the effectiveness of the different measurement-stage mitigation techniques. This complements the studies conducted in a parallel paper for the model-stage techniques, namely the $\theta$-cut approach. We find that pairwise inverse probability (PIP) weights with angular upweighting recover the "true" clustering in all the cases considered, in both Fourier and configuration space. Notably, we present the first ever power spectrum measurement with PIP weights from real data., Comment: 42 pages, 19 figures
- Published
- 2024
16. DESI 2024 VII: Cosmological Constraints from the Full-Shape Modeling of Clustering Measurements
- Author
-
DESI Collaboration, Adame, A. G., Aguilar, J., Ahlen, S., Alam, S., Alexander, D. M., Prieto, C. Allende, Alvarez, M., Alves, O., Anand, A., Andrade, U., Armengaud, E., Avila, S., Aviles, A., Awan, H., Bahr-Kalus, B., Bailey, S., Baltay, C., Bault, A., Behera, J., BenZvi, S., Beutler, F., Bianchi, D., Blake, C., Blum, R., Bonici, M., Brieden, S., Brodzeller, A., Brooks, D., Buckley-Geer, E., Burtin, E., Calderon, R., Canning, R., Rosell, A. Carnero, Cereskaite, R., Cervantes-Cota, J. L., Chabanier, S., Chaussidon, E., Chaves-Montero, J., Chebat, D., Chen, S., Chen, X., Claybaugh, T., Cole, S., Cuceu, A., Davis, T. M., Dawson, K., de la Macorra, A., de Mattia, A., Deiosso, N., Dey, A., Dey, B., Ding, Z., Doel, P., Edelstein, J., Eftekharzadeh, S., Eisenstein, D. J., Elbers, W., Elliott, A., Fagrelius, P., Fanning, K., Ferraro, S., Ereza, J., Findlay, N., Flaugher, B., Font-Ribera, A., Forero-Sánchez, D., Forero-Romero, J. E., Frenk, C. S., Garcia-Quintero, C., Garrison, L. H., Gaztañaga, E., Gil-Marín, H., Gontcho, S. Gontcho A, Gonzalez-Morales, A. X., Gonzalez-Perez, V., Gordon, C., Green, D., Gruen, D., Gsponer, R., Gutierrez, G., Guy, J., Hadzhiyska, B., Hahn, C., Hanif, M. M. S, Herrera-Alcantar, H. K., Honscheid, K., Howlett, C., Huterer, D., Iršič, V., Ishak, M., Joyce, R., Juneau, S., Karaçaylı, N. G., Kehoe, R., Kent, S., Kirkby, D., Kong, H., Koposov, S. E., Kremin, A., Krolewski, A., Lahav, O., Lai, Y., Lan, T. -W., Landriau, M., Lang, D., Lasker, J., Goff, J. M. Le, Guillou, L. Le, Leauthaud, A., Levi, M. E., Li, T. S., Lodha, K., Magneville, C., Manera, M., Margala, D., Martini, P., Matthewson, W., Maus, M., McDonald, P., Medina-Varela, L., Meisner, A., Mena-Fernández, J., Miquel, R., Moon, J., Moore, S., Moustakas, J., Mudur, N., Mueller, E., Muñoz-Gutiérrez, A., Myers, A. D., Nadathur, S., Napolitano, L., Neveux, R., Newman, J. A., Nguyen, N. M., Nie, J., Niz, G., Noriega, H. E., Padmanabhan, N., Paillas, E., Palanque-Delabrouille, N., Pan, J., Penmetsa, S., Percival, W. J., Pieri, M. M., Pinon, M., Poppett, C., Porredon, A., Prada, F., Pérez-Fernández, A., Pérez-Ràfols, I., Rabinowitz, D., Raichoor, A., Ramírez-Pérez, C., Ramirez-Solano, S., Rashkovetskyi, M., Ravoux, C., Rezaie, M., Rich, J., Rocher, A., Rockosi, C., Roe, N. A., Rosado-Marin, A., Ross, A. J., Rossi, G., Ruggeri, R., Ruhlmann-Kleider, V., Samushia, L., Sanchez, E., Saulder, C., Schlafly, E. F., Schlegel, D., Schubnell, M., Seo, H., Shafieloo, A., Sharples, R., Silber, J., Slosar, A., Smith, A., Sprayberry, D., Tan, T., Tarlé, G., Taylor, P., Trusov, S., Vaisakh, R., Valcin, D., Valdes, F., Valogiannis, G., Vargas-Magaña, M., Verde, L., Walther, M., Wang, B., Wang, M. S., Weaver, B. A., Weaverdyck, N., Wechsler, R. H., Weinberg, D. H., White, M., Wilson, M. J., Yi, L., Yu, J., Yu, Y., Yuan, S., Yèche, C., Zaborowski, E. A., Zarrouk, P., Zhang, H., Zhao, C., Zhao, R., Zhou, R., Zhuang, T., and Zou, H.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present cosmological results from the measurement of clustering of galaxy, quasar and Lyman-$\alpha$ forest tracers from the first year of observations with the Dark Energy Spectroscopic Instrument (DESI Data Release 1). We adopt the full-shape (FS) modeling of the power spectrum, including the effects of redshift-space distortions, in an analysis which has been validated in a series of supporting papers. In the flat $\Lambda$CDM cosmological model, DESI (FS+BAO), combined with a baryon density prior from Big Bang Nucleosynthesis and a weak prior on the scalar spectral index, determines matter density to $\Omega_\mathrm{m}=0.2962\pm 0.0095$, and the amplitude of mass fluctuations to $\sigma_8=0.842\pm 0.034$. The addition of the cosmic microwave background (CMB) data tightens these constraints to $\Omega_\mathrm{m}=0.3056\pm 0.0049$ and $\sigma_8=0.8121\pm 0.0053$, while further addition of the the joint clustering and lensing analysis from the Dark Energy Survey Year-3 (DESY3) data leads to a 0.4% determination of the Hubble constant, $H_0 = (68.40\pm 0.27)\,{\rm km\,s^{-1}\,Mpc^{-1}}$. In models with a time-varying dark energy equation of state, combinations of DESI (FS+BAO) with CMB and type Ia supernovae continue to show the preference, previously found in the DESI DR1 BAO analysis, for $w_0>-1$ and $w_a<0$ with similar levels of significance. DESI data, in combination with the CMB, impose the upper limits on the sum of the neutrino masses of $\sum m_\nu < 0.071\,{\rm eV}$ at 95% confidence. DESI data alone measure the modified-gravity parameter that controls the clustering of massive particles, $\mu_0=0.11^{+0.45}_{-0.54}$, while the combination of DESI with the CMB and the clustering and lensing analysis from DESY3 constrains both modified-gravity parameters, giving $\mu_0 = 0.04\pm 0.22$ and $\Sigma_0 = 0.044\pm 0.047$, in agreement with general relativity. [Abridged.], Comment: This DESI Collaboration Key Publication is part of the 2024 publication series using the first year of observations (see https://data.desi.lbl.gov/doc/papers/). 55 pages, 10 figures
- Published
- 2024
17. DESI 2024 II: Sample Definitions, Characteristics, and Two-point Clustering Statistics
- Author
-
DESI Collaboration, Adame, A. G., Aguilar, J., Ahlen, S., Alam, S., Alexander, D. M., Alvarez, M., Alves, O., Anand, A., Andrade, U., Armengaud, E., Avila, S., Aviles, A., Awan, H., Bailey, S., Baltay, C., Bault, A., Behera, J., BenZvi, S., Beutler, F., Bianchi, D., Blake, C., Blum, R., Brieden, S., Brodzeller, A., Brooks, D., Brown, Z., Buckley-Geer, E., Burtin, E., Calderon, R., Canning, R., Rosell, A. Carnero, Cereskaite, R., Cervantes-Cota, J. L., Chabanier, S., Chaussidon, E., Chaves-Montero, J., Chen, S., Chen, X., Claybaugh, T., Cole, S., Cuceu, A., Davis, T. M., Dawson, K., de la Macorra, A., de Mattia, A., Deiosso, N., Demina, R., Dey, A., Dey, B., Ding, Z., Doel, P., Edelstein, J., Eftekharzadeh, S., Eisenstein, D. J., Elliott, A., Fagrelius, P., Fanning, K., Ferraro, S., Ereza, J., Findlay, N., Flaugher, B., Font-Ribera, A., Forero-Sánchez, D., Forero-Romero, J. E., Frenk, C. S., Garcia-Quintero, C., Gaztañaga, E., Gil-Marín, H., Gontcho, S. Gontcho A, Gonzalez-Morales, A. X., Gonzalez-Perez, V., Gordon, C., Green, D., Gruen, D., Gsponer, R., Gutierrez, G., Guy, J., Hadzhiyska, B., Hahn, C., Hanif, M. M. S, Herrera-Alcantar, H. K., Honscheid, K., Hou, J., Howlett, C., Huterer, D., Iršič, V., Ishak, M., Juneau, S., Karaçaylı, N. G., Kehoe, R., Kent, S., Kirkby, D., Kitaura, F. -S., Kong, H., Kremin, A., Krolewski, A., Lai, Y., Lan, T. -W., Landriau, M., Lang, D., Lasker, J., Goff, J. M. Le, Guillou, L. Le, Leauthaud, A., Levi, M. E., Li, T. S., Lodha, K., Magneville, C., Manera, M., Margala, D., Martini, P., Maus, M., McDonald, P., Medina-Varela, L., Meisner, A., Mena-Fernández, J., Miquel, R., Moon, J., Moore, S., Moustakas, J., Mudur, N., Mueller, E., Muñoz-Gutiérrez, A., Myers, A. D., Nadathur, S., Napolitano, L., Neveux, R., Newman, J. A., Nguyen, N. M., Nie, J., Niz, G., Noriega, H. E., Padmanabhan, N., Paillas, E., Palanque-Delabrouille, N., Pan, J., Penmetsa, S., Percival, W. J., Pieri, M. M., Pinon, M., Poppett, C., Porredon, A., Prada, F., Pérez-Fernández, A., Pérez-Ràfols, I., Rabinowitz, D., Raichoor, A., Ramírez-Pérez, C., Ramirez-Solano, S., Rashkovetskyi, M., Ravoux, C., Rezaie, M., Rich, J., Rocher, A., Rockosi, C., Roe, N. A., Rosado-Marin, A., Ross, A. J., Rossi, G., Ruggeri, R., Ruhlmann-Kleider, V., Samushia, L., Sanchez, E., Saulder, C., Schlafly, E. F., Schlegel, D., Scholte, D., Schubnell, M., Seo, H., Sharples, R., Silber, J., Slosar, A., Smith, A., Sprayberry, D., Tan, T., Tarlé, G., Trusov, S., Vaisakh, R., Valcin, D., Valdes, F., Vargas-Magaña, M., Verde, L., Walther, M., Wang, B., Wang, M. S., Weaver, B. A., Weaverdyck, N., Wechsler, R. H., Weinberg, D. H., White, M., Wilson, M. J., Yu, J., Yu, Y., Yuan, S., Yèche, C., Zaborowski, E. A., Zarrouk, P., Zhang, H., Zhao, C., Zhao, R., Zhou, R., and Zou, H.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present the samples of galaxies and quasars used for DESI 2024 cosmological analyses, drawn from the DESI Data Release 1 (DR1). We describe the construction of large-scale structure (LSS) catalogs from these samples, which include matched sets of synthetic reference `randoms' and weights that account for variations in the observed density of the samples due to experimental design and varying instrument performance. We detail how we correct for variations in observational completeness, the input `target' densities due to imaging systematics, and the ability to confidently measure redshifts from DESI spectra. We then summarize how remaining uncertainties in the corrections can be translated to systematic uncertainties for particular analyses. We describe the weights added to maximize the signal-to-noise of DESI DR1 2-point clustering measurements. We detail measurement pipelines applied to the LSS catalogs that obtain 2-point clustering measurements in configuration and Fourier space. The resulting 2-point measurements depend on window functions and normalization constraints particular to each sample, and we present the corrections required to match models to the data. We compare the configuration- and Fourier-space 2-point clustering of the data samples to that recovered from simulations of DESI DR1 and find they are, generally, in statistical agreement to within 2\% in the inferred real-space over-density field. The LSS catalogs, 2-point measurements, and their covariance matrices will be released publicly with DESI DR1., Comment: This DESI Collaboration Key Publication is part of the 2024 publication series using the first year of observations (see https://data.desi.lbl.gov/doc/papers/)
- Published
- 2024
18. DESI 2024 V: Full-Shape Galaxy Clustering from Galaxies and Quasars
- Author
-
DESI Collaboration, Adame, A. G., Aguilar, J., Ahlen, S., Alam, S., Alexander, D. M., Alvarez, M., Alves, O., Anand, A., Andrade, U., Armengaud, E., Avila, S., Aviles, A., Awan, H., Bailey, S., Baltay, C., Bault, A., Behera, J., BenZvi, S., Beutler, F., Bianchi, D., Blake, C., Blum, R., Brieden, S., Brodzeller, A., Brooks, D., Buckley-Geer, E., Burtin, E., Calderon, R., Canning, R., Rosell, A. Carnero, Cereskaite, R., Cervantes-Cota, J. L., Chabanier, S., Chaussidon, E., Chaves-Montero, J., Chen, S., Chen, X., Claybaugh, T., Cole, S., Cuceu, A., Davis, T. M., Dawson, K., de la Macorra, A., de Mattia, A., Deiosso, N., Dey, A., Dey, B., Ding, Z., Doel, P., Edelstein, J., Eftekharzadeh, S., Eisenstein, D. J., Elliott, A., Fagrelius, P., Fanning, K., Ferraro, S., Ereza, J., Findlay, N., Flaugher, B., Font-Ribera, A., Forero-Sánchez, D., Forero-Romero, J. E., Garcia-Quintero, C., Garrison, L. H., Gaztañaga, E., Gil-Marín, H., Gontcho, S. Gontcho A, Gonzalez-Morales, A. X., Gonzalez-Perez, V., Gordon, C., Green, D., Gruen, D., Gsponer, R., Gutierrez, G., Guy, J., Hadzhiyska, B., Hahn, C., Hanif, M. M. S, Herrera-Alcantar, H. K., Honscheid, K., Howlett, C., Huterer, D., Iršič, V., Ishak, M., Juneau, S., Karaçaylı, N. G., Kehoe, R., Kent, S., Kirkby, D., Kong, H., Koposov, S. E., Kremin, A., Krolewski, A., Lai, Y., Lan, T. -W., Landriau, M., Lang, D., Lasker, J., Goff, J. M. Le, Guillou, L. Le, Leauthaud, A., Levi, M. E., Li, T. S., Lodha, K., Magneville, C., Manera, M., Margala, D., Martini, P., Maus, M., McDonald, P., Medina-Varela, L., Meisner, A., Mena-Fernández, J., Miquel, R., Moon, J., Moore, S., Moustakas, J., Mueller, E., Muñoz-Gutiérrez, A., Myers, A. D., Nadathur, S., Napolitano, L., Neveux, R., Newman, J. A., Nguyen, N. M., Nie, J., Niz, G., Noriega, H. E., Padmanabhan, N., Paillas, E., Palanque-Delabrouille, N., Pan, J., Penmetsa, S., Percival, W. J., Pieri, M. M., Pinon, M., Poppett, C., Porredon, A., Prada, F., Pérez-Fernández, A., Pérez-Ràfols, I., Rabinowitz, D., Raichoor, A., Ramírez-Pérez, C., Ramirez-Solano, S., Rashkovetskyi, M., Ravoux, C., Rezaie, M., Rich, J., Rocher, A., Rockosi, C., Rodríguez-Martínez, F., Roe, N. A., Rosado-Marin, A., Ross, A. J., Rossi, G., Ruggeri, R., Ruhlmann-Kleider, V., Samushia, L., Sanchez, E., Saulder, C., Schlafly, E. F., Schlegel, D., Schubnell, M., Seo, H., Sharples, R., Silber, J., Slosar, A., Smith, A., Sprayberry, D., Tan, T., Tarlé, G., Trusov, S., Vaisakh, R., Valcin, D., Valdes, F., Vargas-Magaña, M., Verde, L., Walther, M., Wang, B., Wang, M. S., Weaver, B. A., Weaverdyck, N., Wechsler, R. H., Weinberg, D. H., White, M., Wilson, M. J., Yu, J., Yu, Y., Yuan, S., Yèche, C., Zaborowski, E. A., Zarrouk, P., Zhang, H., Zhao, C., Zhao, R., Zhou, R., and Zou, H.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present the measurements and cosmological implications of the galaxy two-point clustering using over 4.7 million unique galaxy and quasar redshifts in the range $0.1
- Published
- 2024
19. Exploring HOD-dependent systematics for the DESI 2024 Full-Shape galaxy clustering analysis
- Author
-
Findlay, N., Nadathur, S., Percival, W. J., de Mattia, A., Zarrouk, P., Gil-Marín, H., Alves, O., Mena-Fernández, J., Garcia-Quintero, C., Rocher, A., Ahlen, S., Bianchi, D., Brooks, D., Claybaugh, T., Cole, S., de la Macorra, A., Dey, Arjun, Doel, P., Fanning, K., Font-Ribera, A., Forero-Romero, J. E., Gaztañaga, E., Gutierrez, G., Hahn, C., Honscheid, K., Howlett, C., Juneau, S., Levi, M. E., Meisner, A., Miquel, R., Moustakas, J., Palanque-Delabrouille, N., Pérez-Ràfols, I., Rossi, G., Sanchez, E., Schlegel, D., Schubnell, M., Seo, H., Sprayberry, D., Tarlé, G., Vargas-Magaña, M., and Weaver, B. A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We analyse the robustness of the DESI 2024 cosmological inference from fits to the full shape of the galaxy power spectrum to uncertainties in the Halo Occupation Distribution (HOD) model of the galaxy-halo connection and the choice of priors on nuisance parameters. We assess variations in the recovered cosmological parameters across a range of mocks populated with different HOD models and find that shifts are often greater than 20% of the expected statistical uncertainties from the DESI data. We encapsulate the effect of such shifts in terms of a systematic covariance term, $\mathsf{C}_{\rm HOD}$, and an additional diagonal contribution quantifying the impact of our choice of nuisance parameter priors on the ability of the effective field theory (EFT) model to correctly recover the cosmological parameters of the simulations. These two covariance contributions are designed to be added to the usual covariance term, $\mathsf{C}_{\rm stat}$, describing the statistical uncertainty in the power spectrum measurement, in order to fairly represent these sources of systematic uncertainty. This approach is more general and robust to choices of model free parameters or additional external datasets used in cosmological fits than the alternative approach of adding systematic uncertainties at the level of the recovered marginalised parameter posteriors. We compare the approaches within the context of a fixed $\Lambda$CDM model and demonstrate that our method gives conservative estimates of the systematic uncertainty that nevertheless have little impact on the final posteriors obtained from DESI data., Comment: This DESI Collaboration Publication is part of the 2024 publication series using the first year of observations (see https://data.desi.lbl.gov/doc/papers/). 26 pages, 10 figures
- Published
- 2024
20. Towards Active Flow Control Strategies Through Deep Reinforcement Learning
- Author
-
Montalà, Ricard, Font, Bernat, Suárez, Pol, Rabault, Jean, Lehmkuhl, Oriol, and Rodriguez, Ivette
- Subjects
Computer Science - Machine Learning ,Physics - Fluid Dynamics - Abstract
This paper presents a deep reinforcement learning (DRL) framework for active flow control (AFC) to reduce drag in aerodynamic bodies. Tested on a 3D cylinder at Re = 100, the DRL approach achieved a 9.32% drag reduction and a 78.4% decrease in lift oscillations by learning advanced actuation strategies. The methodology integrates a CFD solver with a DRL model using an in-memory database for efficient communication between, Comment: ECOMMAS 2024 conference proceeding paper
- Published
- 2024
21. DESIVAST: A Catalog of Low-Redshift Voids using Data from the DESI DR1 Bright Galaxy Survey
- Author
-
Rincon, Hernan, BenZvi, Segev, Douglass, Kelly, Veyrat, Dahlia, Aguilar, Jessica Nicole, Ahlen, Steven, Bianchi, Davide, Brooks, David, Claybaugh, Todd, Cole, Shaun, de la Macorra, Axel, Doel, Peter, Font-Ribera, Andreu, Forero-Romero, Jaime E., Gaztañaga, Enrique, Gontcho, Satya Gontcho A, Gutierrez, Gaston, Honscheid, Klaus, Howlett, Cullan, Juneau, Stephanie, Kehoe, Robert, Koposov, Sergey, Lambert, Andrew, Landriau, Martin, Guillou, Laurent Le, Meisner, Aaron, Miquel, Ramon, Moustakas, John, Niz, Gustavo, Percival, Will, Prada, Francisco, Pérez-Ràfols, Ignasi, Rossi, Graziano, Sanchez, Eusebio, Schubnell, Michael, Seo, Hee-Jong, Sprayberry, David, Tarlé, Gregory, Weaver, Benjamin Alan, and Zou, Hu
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present three separate void catalogs created using a volume-limited sample of the DESI Year 1 Bright Galaxy Survey. We use the algorithms VoidFinder and V2 to construct void catalogs out to a redshift of z=0.24. We obtain 1,461 interior voids with VoidFinder, 420 with V2 using REVOLVER pruning, and 295 with V2 using VIDE pruning. Comparing our catalog with an overlapping SDSS void catalog, we find generally consistent void properties but significant differences in the void volume overlap, which we attribute to differences in the galaxy selection and survey masks. These catalogs are suitable for studying the variation in galaxy properties with cosmic environment and for cosmological studies., Comment: 17 pages, 6 figures
- Published
- 2024
22. Tripling the Census of Dwarf AGN Candidates Using DESI Early Data
- Author
-
Pucha, Ragadeepika, Juneau, S., Dey, Arjun, Siudek, M., Mezcua, M., Moustakas, J., BenZvi, S., Hainline, K., Hviding, R., Mao, Yao-Yuan, Alexander, D. M., Alfarsy, R., Circosta, C., Guo, Wei-Jian, Manwadkar, V., Martini, P., Weaver, B. A., Aguilar, J., Ahlen, S., Bianchi, D., Brooks, D., Canning, R., Claybaugh, T., Dawson, K., de la Macorra, A., Dey, Biprateep, Doel, P., Font-Ribera, A., Forero-Romero, J. E., Gaztañaga, E., Gontcho, S. Gontcho A, Gutierrez, G., Honscheid, K., Kehoe, R., Koposov, S. E., Lambert, A., Landriau, M., Guillou, L. Le, Meisner, A., Miquel, R., Prada, F., Rossi, G., Sanchez, E., Schlegel, D., Schubnell, M., Seo, H., Sprayberry, D., Tarlé, G., and Zou, H.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
Using early data from the Dark Energy Spectroscopic Instrument (DESI) survey, we search for AGN signatures in 410,757 line-emitting galaxies. By employing the BPT emission-line ratio diagnostic diagram, we identify AGN in 75,928/296,261 ($\approx$25.6%) high-mass ($\log (M_{\star}/\rm M_{\odot}) >$ 9.5) and 2,444/114,496 ($\approx$2.1%) dwarf ($\log (M_{\star}/\rm M_{\odot}) \leq$ 9.5) galaxies. Of these AGN candidates, 4,181 sources exhibit a broad H$\alpha$ component, allowing us to estimate their BH masses via virial techniques. This study more than triples the census of dwarf AGN as well as that of intermediate-mass black hole (IMBH; $M_{\rm BH} \le 10^6~\rm M_{\odot}$) candidates, spanning a broad discovery space in stellar mass (7 $< \log (M_{\star}/\rm M_{\odot}) <$ 12) and redshift (0.001 $< \rm z <$ 0.45). The observed AGN fraction in dwarf galaxies ($\approx$2.1%) is nearly four times higher than prior estimates, primarily due to DESI's smaller fiber size, which enables the detection of lower luminosity dwarf AGN candidates. We also extend the $M_{\rm BH}$ - $M_{\star}$ scaling relation down to $\log (M_{\star}/\rm M_{\odot}) \approx$ 8.5 and $\log (M_{\rm BH}/M_{\odot}) \approx$ 4.4, with our results aligning well with previous low-redshift studies. The large statistical sample of dwarf AGN candidates from current and future DESI releases will be invaluable for enhancing our understanding of galaxy evolution at the low-mass end of the galaxy mass function., Comment: 35 pages, 22 figures, Submitted to AAS Journals, Comments are welcome
- Published
- 2024
23. Insights from the first flaring activity of a high-synchrotron-peaked blazar with X-ray polarization and VHE gamma rays
- Author
-
Abe, K., Abe, S., Abhir, J., Abhishek, A., Acciari, V. A., Aguasca-Cabot, A., Agudo, I., Aniello, T., Ansoldi, S., Antonelli, L. A., Engels, A. Arbet, Arcaro, C., Asano, K., Babić, A., de Almeida, U. Barres, Barrio, J. A., Barrios-Jiménez, L., Batković, I., Baxter, J., González, J. Becerra, Bednarek, W., Bernardini, E., Bernete, J., Berti, A., Besenrieder, J., Bigongiari, C., Biland, A., Blanch, O., Bonnoli, G., Bošnjak, Ž., Bronzini, E., Burelli, I., Campoy-Ordaz, A., Carosi, A., Carosi, R., Carretero-Castrillo, M., Castro-Tirado, A. J., Cerasole, D., Ceribella, G., Chai, Y., Chilingarian, A., Cifuentes, A., Colombo, E., Contreras, J. L., Cortina, J., Covino, S., D'Ammando, F., D'Amico, G., Da Vela, P., Dazzi, F., De Angelis, A., De Lotto, B., de Menezes, R., Delfino, M., Delgado, J., Mendez, C. Delgado, Di Pierro, F., Di Tria, R., Di Venere, L., Dinesh, A., Prester, D. Dominis, Donini, A., Dorner, D., Doro, M., Eisenberger, L., Elsaesser, D., Escudero, J., Fariña, L., Foffano, L., Font, L., Fröse, S., Fukazawa, Y., López, R. J. García, Garczarczyk, M., Gasparyan, S., Gaug, M., Paiva, J. G. Giesbrecht, Giglietto, N., Giordano, F., Gliwny, P., Godinović, N., Gradetzke, T., Grau, R., Green, D., Green, J. G., Günther, P., Hadasch, D., Hahn, A., Hassan, T., Heckmann, L., Llorente, J. Herrera, Hrupec, D., Imazawa, R., Israyelyan, D., Itokawa, T., Martínez, I. Jiménez, Quiles, J. Jiménez, Jormanainen, J., Kankkunen, S., Kayanoki, T., Kerszberg, D., Khachatryan, M., Kluge, G. W., Kobayashi, Y., Konrad, J., Kouch, P. M., Kubo, H., Kushida, J., Láinez, M., Lamastra, A., Lindfors, E., Lombardi, S., Longo, F., López-Coto, R., López-Moya, M., López-Oramas, A., Loporchio, S., Lorini, A., Lyard, E., Majumdar, P., Makariev, M., Maneva, G., Manganaro, M., Mangano, S., Mannheim, K., Mariotti, M., Martínez, M., Maruševec, P., Mas-Aguilar, A., Mazin, D., Menchiari, S., Mender, S., Miceli, D., Miranda, J. M., Mirzoyan, R., González, M. Molero, Molina, E., Mondal, H. A., Moralejo, A., Nakamori, T., Nanci, C., Neustroev, V., Nickel, L., Rosillo, M. Nievas, Nigro, C., Nikolić, L., Nilsson, K., Nishijima, K., Ekoume, T. Njoh, Noda, K., Nozaki, S., Okumura, A., Paiano, S., Paneque, D., Paoletti, R., Paredes, J. M., Peresano, M., Persic, M., Pihet, M., Pirola, G., Podobnik, F., Moroni, P. G. Prada, Prandini, E., Principe, G., Rhode, W., Ribó, M., Rico, J., Righi, C., Sahakyan, N., Saito, T., Saturni, F. G., Schmuckermaier, F., Schubert, J. L., Sciaccaluga, A., Silvestri, G., Sitarek, J., Sliusar, V., Sobczynska, D., Stamerra, A., Strišković, J., Strom, D., Strzys, M., Suda, Y., Tajima, H., Takahashi, M., Takeishi, R., Temnikov, P., Terauchi, K., Terzić, T., Teshima, M., Truzzi, S., Tutone, A., Ubach, S., van Scherpenberg, J., Ventura, S., Verna, G., Viale, I., Vigliano, A., Vigorito, C. F., Vitale, V., Vovk, I., Walter, R., Wersig, F., Will, M., Yamamoto, T., Yeung, P. K. H., Liodakis, I., Middei, R., Kiehlmann, S., Gesu, L. D., Kim, D. E., Ehlert, S. R., Saade, M. L., Kaaret, P., Maksym, W. P., Chen, C. T., Pérez, I. De La Calle, Perri, M., Verrecchia, F., Domann, O., Dürr, S., Feige, M., Heidemann, M., Koppitz, O., Manhalter, G., Reinhart, D., Steineke, R., Lorey, C., McCall, C., Jermak, H. E., Steele, I. A., Ramazani, V. Fallah, Otero-Santos, J., Morcuende, D., Aceituno, F. J., Casanova, V., Sota, A., Jorstad, S. G., Marscher, A. P., Pauley, C., Sasada, M., Kawabata, K. S., Uemura, M., Mizuno, T., Nakaoka, T., Akitaya, H., Myserlis, I., Gurwell, M., Keating, G. K., Rao, R., Angelakis, E., and Kraus, A.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We study a flaring activity of the HSP Mrk421 that was characterized from radio to very-high-energy (VHE; E $>0.1$TeV) gamma rays with MAGIC, Fermi-LAT, Swift, XMM-Newton and several optical and radio telescopes. These observations included, for the first time for a gamma-ray flare of a blazar, simultaneous X-ray polarization measurements with IXPE. We find substantial variability in both X-rays and VHE gamma rays throughout the campaign, with the highest VHE flux above 0.2 TeV occurring during the IXPE observing window, and exceeding twice the flux of the Crab Nebula. However, the VHE and X-ray spectra are on average softer, and the correlation between these two bands weaker that those reported in previous flares of Mrk421. IXPE reveals an X-ray polarization degree significantly higher than that at radio and optical frequencies. The X-ray polarization angle varies by $\sim$100$^\circ$ on timescales of days, and the polarization degree changes by more than a factor 4. The highest X-ray polarization degree reaches 26%, around which a X-ray counter-clockwise hysteresis loop is measured with XMM-Newton. It suggests that the X-ray emission comes from particles close to the high-energy cutoff, hence possibly probing an extreme case of the Turbulent Extreme Multi-Zone model. We model the broadband emission with a simplified stratified jet model throughout the flare. The polarization measurements imply an electron distribution in the X-ray emitting region with a very high minimum Lorentz factor, which is expected in electron-ion plasma, as well as a variation of the emitting region size up to a factor of three during the flaring activity. We find no correlation between the fluxes and the evolution of the model parameters, which indicates a stochastic nature of the underlying physical mechanism. Such behaviour would be expected in a highly turbulent electron-ion plasma crossing a shock front., Comment: Submitted to Astronomy and Astrophysics. Corresponding authors: Axel Arbet-Engels, Lea Heckmann, David Paneque
- Published
- 2024
24. Multi-wavelength study of OT 081: broadband modelling of a transitional blazar
- Author
-
MAGIC Collaboration, Abe, H., Abe, S., Acciari, V. A., Agudo, I., Aniello, T., Ansoldi, S., Antonelli, L. A., Engels, A. Arbet, Arcaro, C., Artero, M., Asano, K., Baack, D., Babić, A., Baquero, A., de Almeida, U. Barres, Batković, I., Baxter, J., Bernardini, E., Bernardos, M., Bernete, J., Berti, A., Bigongiari, C., Biland, A., Blanch, O., Bonnoli, G., Bošnjak, Ž., Burelli, I., Busetto, G., Campoy-Ordaz, A., Carosi, A., Carosi, R., Carretero-Castrillo, M., Castro-Tirado, A. J., Chai, Y., Cifuentes, A., Cikota, S., Colombo, E., Contreras, J. L., Cortina, J., Covino, S., D'Amico, G., D'Elia, V., Da Vela, P., Dazzi, F., De Angelis, A., De Lotto, B., Del Popolo, A., Delfino, M., Delgado, J., Mendez, C. Delgado, Depaoli, D., Di Pierro, F., Di Venere, L., Prester, D. Dominis, Donini, A., Dorner, D., Doro, M., Elsaesser, D., Emery, G., Escudero, J., Fariña, L., Fattorini, A., Foffano, L., Font, L., Fukami, S., Fukazawa, Y., López, R. J. García, Gasparyan, S., Gaug, M., Paiva, J. G. Giesbrecht, Giglietto, N., Giordano, F., Gliwny, P., Grau, R., Green, J. G., Hadasch, D., Hahn, A., Heckmann, L., Herrera, J., Hrupec, D., Hütten, M., Imazawa, R., Inada, T., Iotov, R., Ishio, K., Martínez, I. Jiménez, Jormanainen, J., Kerszberg, D., Kluge, G. W., Kobayashi, Y., Kubo, H., Kushida, J., Lezáun, M. Láinez, Lamastra, A., Leone, F., Lindfors, E., Linhoff, L., Lombardi, S., Longo, F., López-Moya, M., López-Oramas, A., Loporchio, S., Lorini, A., Fraga, B. Machado de Oliveira, Majumdar, P., Makariev, M., Maneva, G., Mang, N., Manganaro, M., Mangano, S., Mannheim, K., Mariotti, M., Martínez, M., Mas-Aguilar, A., Mazin, D., Menchiari, S., Mender, S., Mićanović, S., Miceli, D., Miranda, J. M., Mirzoyan, R., Molina, E., Mondal, H. A., Morcuende, D., Nanci, C., Neustroev, V., Nigro, C., Nishijima, K., Ekoume, T. Njoh, Noda, K., Nozaki, S., Ohtani, Y., Otero-Santos, J., Paiano, S., Palatiello, M., Paneque, D., Paoletti, R., Paredes, J. M., Pavletić, L., Persic, M., Pihet, M., Pirola, G., Podobnik, F., Moroni, P. G. Prada, Prandini, E., Principe, G., Priyadarshi, C., Rhode, W., Ribó, M., Rico, J., Righi, C., Sahakyan, N., Saito, T., Satalecka, K., Saturni, F. G., Schleicher, B., Schmidt, K., Schmuckermaier, F., Schubert, J. L., Schweizer, T., Sitarek, J., Spolon, A., Stamerra, A., Strišković, J., Strom, D., Suda, Y., Surić, T., Suutarinen, S., Tajima, H., Takahashi, M., Takeishi, R., Tavecchio, F., Temnikov, P., Terzić, T., Teshima, M., Tosti, L., Truzzi, S., Ubach, S., van Scherpenberg, J., Ventura, S., Verguilov, V., Viale, I., Vigorito, C. F., Vitale, V., Walter, R., Yamamoto, T., Collaborators, Benkhali, F. Ait, Becherini, Y., Bi, B., Böttcher, M., Bolmont, J., Brown, A., Bulik, T., Casanova, S., Chand, T., Chandra, S., Chibueze, J., Chibueze, O., Egberts, K., Einecke, S., Ernenwein, J. -P., Fontaine, G., Gabici, S., Goswami, P., Holler, M., Jamrozy, M., Joshi, V., Kasai, E., Katarzyński, K., Khatoon, R., Khélifi, B., Kluzniak, W., Kosack, K., Stum, S. Le, Lemière, A., Marx, R., Moderski, R., Moghadam, M. O., de Naurois, M., Niemiec, J., O'Brien, P., Ostrowski, M., Peron, G., Pita, S., Pühlhofer, G., Quirrenbach, A., Rudak, B., Sahakian, V., Sanchez, D. A., Santangelo, A., Sasaki, M., Schutte, H. M., Seglar-Arroyo, M., Shapopi, J. N. S., Steenkamp, R., Steppa, C., Suzuki, H., Tanaka, T., Tluczykont, M., Venter, C., Wagner, S. J., Wierzcholska, A., Zdziarski, A. A., Żywucka, N., Collaboration, Fermi-LAT, González, J. Becerra, Ciprini, S., Venters, T. M., collaborators, MWL, D'Ammando, F., Esteban-Gutiérrez, A., Ramazani, V. Fallah, Filippenko, A. V., Hovatta, T., Jermak, H., Jorstad, S., Kiehlmann, S., Lähteenmäki, A., Larionov, V. M., Larionova, E., Marscher, A. P., Morozova, D., Max-Moerbeck, W., Readhead, A. C. S., Reeves, R., Steele, I. A., Tornikoski, M., Verrecchia, F., Xiao, H., and Zheng, W.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
OT 081 is a well-known, luminous blazar that is remarkably variable in many energy bands. We present the first broadband study of the source which includes very-high-energy (VHE, $E>$100\,GeV) $\gamma$-ray data taken by the MAGIC and H.E.S.S. imaging Cherenkov telescopes. The discovery of VHE $\gamma$-ray emission happened during a high state of $\gamma$-ray activity in July 2016, observed by many instruments from radio to VHE $\gamma$-rays. We identify four states of activity of the source, one of which includes VHE $\gamma$-ray emission. Variability in the VHE domain is found on daily timescales. The intrinsic VHE spectrum can be described by a power-law with index $3.27\pm0.44_{\rm stat}\pm0.15_{\rm sys}$ (MAGIC) and $3.39\pm0.58_{\rm stat}\pm0.64_{\rm sys}$ (H.E.S.S.) in the energy range of 55--300\,GeV and 120--500\,GeV, respectively. The broadband emission cannot be sucessfully reproduced by a simple one-zone synchrotron self-Compton model. Instead, an additional external Compton component is required. We test a lepto-hadronic model that reproduces the dataset well and a proton-synchrotron dominated model that requires an extreme proton luminosity. Emission models that are able to successfully represent the data place the emitting region well outside of the Broad Line Region (BLR) to a location at which the radiative environment is dominated by the infrared thermal radiation field of the dusty torus. In the scenario described by this flaring activity, the source appears to be an FSRQ, in contrast with past categorizations. This suggests that the source can be considered to be a transitional blazar, intermediate between BL~Lac and FSRQ objects., Comment: Accepted on MNRAS Corresponding authors: M. Manganaro, J. Becerra Gonz\'alez, M. Seglar-Arroyo, D. A. Sanchez
- Published
- 2024
25. Search for gravitational waves emitted from SN 2023ixf
- Author
-
The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, Abac, A. G., Abbott, R., Abouelfettouh, I., Acernese, F., Ackley, K., Adhicary, S., Adhikari, N., Adhikari, R. X., Adkins, V. K., Agarwal, D., Agathos, M., Abchouyeh, M. Aghaei, Aguiar, O. D., Aguilar, I., Aiello, L., Ain, A., Akutsu, T., Albanesi, S., Alfaidi, R. A., Al-Jodah, A., Alléné, C., Allocca, A., Al-Shammari, S., Altin, P. A., Alvarez-Lopez, S., Amato, A., Amez-Droz, L., Amorosi, A., Amra, C., Ananyeva, A., Anderson, S. B., Anderson, W. G., Andia, M., Ando, M., Andrade, T., Andres, N., Andrés-Carcasona, M., Andrić, T., Anglin, J., Ansoldi, S., Antelis, J. M., Antier, S., Aoumi, M., Appavuravther, E. Z., Appert, S., Apple, S. K., Arai, K., Araya, A., Araya, M. C., Areeda, J. S., Argianas, L., Aritomi, N., Armato, F., Arnaud, N., Arogeti, M., Aronson, S. M., Ashton, G., Aso, Y., Assiduo, M., Melo, S. Assis de Souza, Aston, S. M., Astone, P., Attadio, F., Aubin, F., AultONeal, K., Avallone, G., Babak, S., Badaracco, F., Badger, C., Bae, S., Bagnasco, S., Bagui, E., Baier, J. G., Baiotti, L., Bajpai, R., Baka, T., Ball, M., Ballardin, G., Ballmer, S. W., Banagiri, S., Banerjee, B., Bankar, D., Baral, P., Barayoga, J. C., Barish, B. C., Barker, D., Barneo, P., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barta, D., Bartoletti, A. M., Barton, M. A., Bartos, I., Basak, S., Basalaev, A., Bassiri, R., Basti, A., Bates, D. E., Bawaj, M., Baxi, P., Bayley, J. C., Baylor, A. C., Baynard II, P. A., Bazzan, M., Bedakihale, V. M., Beirnaert, F., Bejger, M., Belardinelli, D., Bell, A. S., Benedetto, V., Benoit, W., Bentley, J. D., Yaala, M. Ben, Bera, S., Berbel, M., Bergamin, F., Berger, B. K., Bernuzzi, S., Beroiz, M., Bersanetti, D., Bertolini, A., Betzwieser, J., Beveridge, D., Bevins, N., Bhandare, R., Bhardwaj, U., Bhatt, R., Bhattacharjee, D., Bhaumik, S., Bhowmick, S., Bianchi, A., Bilenko, I. A., Billingsley, G., Binetti, A., Bini, S., Birnholtz, O., Biscoveanu, S., Bisht, A., Bitossi, M., Bizouard, M. -A., Blackburn, J. K., Blagg, L. A., Blair, C. D., Blair, D. G., Bobba, F., Bode, N., Boileau, G., Boldrini, M., Bolingbroke, G. N., Bolliand, A., Bonavena, L. D., Bondarescu, R., Bondu, F., Bonilla, E., Bonilla, M. S., Bonino, A., Bonnand, R., Booker, P., Borchers, A., Boschi, V., Bose, S., Bossilkov, V., Boudart, V., Boudon, A., Bozzi, A., Bradaschia, C., Brady, P. R., Braglia, M., Branch, A., Branchesi, M., Brandt, J., Braun, I., Breschi, M., Briant, T., Brillet, A., Brinkmann, M., Brockill, P., Brockmueller, E., Brooks, A. F., Brown, B. C., Brown, D. D., Brozzetti, M. L., Brunett, S., Bruno, G., Bruntz, R., Bryant, J., Bucci, F., Buchanan, J., Bulashenko, O., Bulik, T., Bulten, H. J., Buonanno, A., Burtnyk, K., Buscicchio, R., Buskulic, D., Buy, C., Byer, R. L., Davies, G. S. Cabourn, Cabras, G., Cabrita, R., Cáceres-Barbosa, V., Cadonati, L., Cagnoli, G., Cahillane, C., Bustillo, J. Calderón, Callister, T. A., Calloni, E., Camp, J. B., Canepa, M., Santoro, G. Caneva, Cannon, K. C., Cao, H., Capistran, L. A., Capocasa, E., Capote, E., Carapella, G., Carbognani, F., Carlassara, M., Carlin, J. B., Carpinelli, M., Carrillo, G., Carter, J. J., Carullo, G., Diaz, J. Casanueva, Casentini, C., Castro-Lucas, S. Y., Caudill, S., Cavaglià, M., Cavalieri, R., Cella, G., Cerdá-Durán, P., Cesarini, E., Chaibi, W., Chakraborty, P., Subrahmanya, S. Chalathadka, Chan, J. C. L., Chan, M., Chandra, K., Chang, R. -J., Chao, S., Charlton, E. L., Charlton, P., Chassande-Mottin, E., Chatterjee, C., Chatterjee, Debarati, Chatterjee, Deep, Chaturvedi, M., Chaty, S., Chen, A., Chen, A. H. -Y., Chen, D., Chen, H., Chen, H. Y., Chen, J., Chen, K. H., Chen, Y., Chen, Yanbei, Chen, Yitian, Cheng, H. P., Chessa, P., Cheung, H. T., Cheung, S. Y., Chiadini, F., Chiarini, G., Chierici, R., Chincarini, A., Chiofalo, M. L., Chiummo, A., Chou, C., Choudhary, S., Christensen, N., Chua, S. S. Y., Chugh, P., Ciani, G., Ciecielag, P., Cieślar, M., Cifaldi, M., Ciolfi, R., Clara, F., Clark, J. A., Clarke, J., Clarke, T. A., Clearwater, P., Clesse, S., Coccia, E., Codazzo, E., Cohadon, P. -F., Colace, S., Colleoni, M., Collette, C. G., Collins, J., Colloms, S., Colombo, A., Colpi, M., Compton, C. M., Connolly, G., Conti, L., Corbitt, T. R., Cordero-Carrión, I., Corezzi, S., Cornish, N. J., Corsi, A., Cortese, S., Costa, C. A., Cottingham, R., Coughlin, M. W., Couineaux, A., Coulon, J. -P., Countryman, S. T., Coupechoux, J. -F., Couvares, P., Coward, D. M., Cowart, M. J., Coyne, R., Craig, K., Creed, R., Creighton, J. D. E., Creighton, T. D., Cremonese, P., Criswell, A. W., Crockett-Gray, J. C. G., Crook, S., Crouch, R., Csizmazia, J., Cudell, J. R., Cullen, T. J., Cumming, A., Cuoco, E., Cusinato, M., Dabadie, P., Canton, T. Dal, Dall'Osso, S., Pra, S. Dal, Dálya, G., D'Angelo, B., Danilishin, S., D'Antonio, S., Danzmann, K., Darroch, K. E., Dartez, L. P., Dasgupta, A., Datta, S., Dattilo, V., Daumas, A., Davari, N., Dave, I., Davenport, A., Davier, M., Davies, T. F., Davis, D., Davis, L., Davis, M. C., Davis, P. J., Dax, M., De Bolle, J., Deenadayalan, M., Degallaix, J., De Laurentis, M., Deléglise, S., De Lillo, F., Dell'Aquila, D., Del Pozzo, W., De Marco, F., De Matteis, F., D'Emilio, V., Demos, N., Dent, T., Depasse, A., DePergola, N., De Pietri, R., De Rosa, R., De Rossi, C., DeSalvo, R., De Simone, R., Dhani, A., Diab, R., Díaz, M. C., Di Cesare, M., Dideron, G., Didio, N. A., Dietrich, T., Di Fiore, L., Di Fronzo, C., Di Giovanni, M., Di Girolamo, T., Diksha, D., Di Michele, A., Ding, J., Di Pace, S., Di Palma, I., Di Renzo, F., Divyajyoti, Dmitriev, A., Doctor, Z., Dohmen, E., Doleva, P. P., Dominguez, D., D'Onofrio, L., Donovan, F., Dooley, K. L., Dooney, T., Doravari, S., Dorosh, O., Drago, M., Driggers, J. C., Ducoin, J. -G., Dunn, L., Dupletsa, U., D'Urso, D., Duval, H., Duverne, P. -A., Dwyer, S. E., Eassa, C., Ebersold, M., Eckhardt, T., Eddolls, G., Edelman, B., Edo, T. B., Edy, O., Effler, A., Eichholz, J., Einsle, H., Eisenmann, M., Eisenstein, R. A., Ejlli, A., Eleveld, R. M., Emma, M., Endo, K., Engl, A. J., Enloe, E., Errico, L., Essick, R. C., Estellés, H., Estevez, D., Etzel, T., Evans, M., Evstafyeva, T., Ewing, B. E., Ezquiaga, J. M., Fabrizi, F., Faedi, F., Fafone, V., Fairhurst, S., Farah, A. M., Farr, B., Farr, W. M., Favaro, G., Favata, M., Fays, M., Fazio, M., Feicht, J., Fejer, M. M., Felicetti, R., Fenyvesi, E., Ferguson, D. L., Ferraiuolo, S., Ferrante, I., Ferreira, T. A., Fidecaro, F., Figura, P., Fiori, A., Fiori, I., Fishbach, M., Fisher, R. P., Fittipaldi, R., Fiumara, V., Flaminio, R., Fleischer, S. M., Fleming, L. S., Floden, E., Foley, E. M., Fong, H., Font, J. A., Fornal, B., Forsyth, P. W. F., Franceschetti, K., Franchini, N., Frasca, S., Frasconi, F., Mascioli, A. Frattale, Frei, Z., Freise, A., Freitas, O., Frey, R., Frischhertz, W., Fritschel, P., Frolov, V. V., Fronzé, G. G., Fuentes-Garcia, M., Fujii, S., Fujimori, T., Fulda, P., Fyffe, M., Gadre, B., Gair, J. R., Galaudage, S., Galdi, V., Gallagher, H., Gallardo, S., Gallego, B., Gamba, R., Gamboa, A., Ganapathy, D., Ganguly, A., Garaventa, B., García-Bellido, J., Núñez, C. García, García-Quirós, C., Gardner, J. W., Gardner, K. A., Gargiulo, J., Garron, A., Garufi, F., Gasbarra, C., Gateley, B., Gayathri, V., Gemme, G., Gennai, A., Gennari, V., George, J., George, R., Gerberding, O., Gergely, L., Ghosh, Archisman, Ghosh, Sayantan, Ghosh, Shaon, Ghosh, Shrobana, Ghosh, Suprovo, Ghosh, Tathagata, Giacoppo, L., Giaime, J. A., Giardina, K. D., Gibson, D. R., Gibson, D. T., Gier, C., Giri, P., Gissi, F., Gkaitatzis, S., Glanzer, J., Glotin, F., Godfrey, J., Godwin, P., Goebbels, N. L., Goetz, E., Golomb, J., Lopez, S. Gomez, Goncharov, B., Gong, Y., González, G., Goodarzi, P., Goode, S., Goodwin-Jones, A. W., Gosselin, M., Göttel, A. S., Gouaty, R., Gould, D. W., Govorkova, K., Goyal, S., Grace, B., Grado, A., Graham, V., Granados, A. E., Granata, M., Granata, V., Gras, S., Grassia, P., Gray, A., Gray, C., Gray, R., Greco, G., Green, A. C., Green, S. M., Green, S. R., Gretarsson, A. M., Gretarsson, E. M., Griffith, D., Griffiths, W. L., Griggs, H. L., Grignani, G., Grimaldi, A., Grimaud, C., Grote, H., Guerra, D., Guetta, D., Guidi, G. M., Guimaraes, A. R., Gulati, H. K., Gulminelli, F., Gunny, A. M., Guo, H., Guo, W., Guo, Y., Gupta, Anchal, Gupta, Anuradha, Gupta, Ish, Gupta, N. C., Gupta, P., Gupta, S. K., Gupta, T., Gupte, N., Gurs, J., Gutierrez, N., Guzman, F., H, H. -Y., Haba, D., Haberland, M., Haino, S., Hall, E. D., Hamilton, E. Z., Hammond, G., Han, W. -B., Haney, M., Hanks, J., Hanna, C., Hannam, M. D., Hannuksela, O. A., Hanselman, A. G., Hansen, H., Hanson, J., Harada, R., Hardison, A. R., Haris, K., Harmark, T., Harms, J., Harry, G. M., Harry, I. W., Hart, J., Haskell, B., Haster, C. -J., Hathaway, J. S., Haughian, K., Hayakawa, H., Hayama, K., Hayes, R., Heffernan, A., Heidmann, A., Heintze, M. C., Heinze, J., Heinzel, J., Heitmann, H., Hellman, F., Hello, P., Helmling-Cornell, A. F., Hemming, G., Henderson-Sapir, O., Hendry, M., Heng, I. S., Hennes, E., Henshaw, C., Hertog, T., Heurs, M., Hewitt, A. L., Heyns, J., Higginbotham, S., Hild, S., Hill, S., Himemoto, Y., Hirata, N., Hirose, C., Hoang, S., Hochheim, S., Hofman, D., Holland, N. A., Holley-Bockelmann, K., Holmes, Z. J., Holz, D. E., Honet, L., Hong, C., Hornung, J., Hoshino, S., Hough, J., Hourihane, S., Howell, E. J., Hoy, C. G., Hrishikesh, C. A., Hsieh, H. -F., Hsiung, C., Hsu, H. C., Hsu, W. -F., Hu, P., Hu, Q., Huang, H. Y., Huang, Y. -J., Huddart, A. D., Hughey, B., Hui, D. C. Y., Hui, V., Husa, S., Huxford, R., Huynh-Dinh, T., Iampieri, L., Iandolo, G. A., Ianni, M., Iess, A., Imafuku, H., Inayoshi, K., Inoue, Y., Iorio, G., Iqbal, M. H., Irwin, J., Ishikawa, R., Isi, M., Ismail, M. A., Itoh, Y., Iwanaga, H., Iwaya, M., Iyer, B. R., JaberianHamedan, V., Jacquet, C., Jacquet, P. -E., Jadhav, S. J., Jadhav, S. P., Jain, T., James, A. L., James, P. A., Jamshidi, R., Janquart, J., Janssens, K., Janthalur, N. N., Jaraba, S., Jaranowski, P., Jaume, R., Javed, W., Jennings, A., Jia, W., Jiang, J., Kubisz, J., Johanson, C., Johns, G. R., Johnson, N. A., Johnston, M. C., Johnston, R., Johny, N., Jones, D. H., Jones, D. I., Jones, R., Jose, S., Joshi, P., Ju, L., Jung, K., Junker, J., Juste, V., Kajita, T., Kaku, I., Kalaghatgi, C., Kalogera, V., Kamiizumi, M., Kanda, N., Kandhasamy, S., Kang, G., Kanner, J. B., Kapadia, S. J., Kapasi, D. P., Karat, S., Karathanasis, C., Kashyap, R., Kasprzack, M., Kastaun, W., Kato, T., Katsavounidis, E., Katzman, W., Kaushik, R., Kawabe, K., Kawamoto, R., Kazemi, A., Keitel, D., Kelley-Derzon, J., Kennington, J., Kesharwani, R., Key, J. S., Khadela, R., Khadka, S., Khalili, F. Y., Khan, F., Khan, I., Khanam, T., Khursheed, M., Khusid, N. M., Kiendrebeogo, W., Kijbunchoo, N., Kim, C., Kim, J. C., Kim, K., Kim, M. H., Kim, S., Kim, Y. -M., Kimball, C., Kinley-Hanlon, M., Kinnear, M., Kissel, J. S., Klimenko, S., Knee, A. M., Knust, N., Kobayashi, K., Obergaulinger, M., Koch, P., Koehlenbeck, S. M., Koekoek, G., Kohri, K., Kokeyama, K., Koley, S., Kolitsidou, P., Kolstein, M., Komori, K., Kong, A. K. H., Kontos, A., Korobko, M., Kossak, R. V., Kou, X., Koushik, A., Kouvatsos, N., Kovalam, M., Kozak, D. B., Kranzhoff, S. L., Kringel, V., Krishnendu, N. V., Królak, A., Kruska, K., Kuehn, G., Kuijer, P., Kulkarni, S., Ramamohan, A. Kulur, Kumar, A., Kumar, Praveen, Kumar, Prayush, Kumar, Rahul, Kumar, Rakesh, Kume, J., Kuns, K., Kuntimaddi, N., Kuroyanagi, S., Kurth, N. J., Kuwahara, S., Kwak, K., Kwan, K., Kwok, J., Lacaille, G., Lagabbe, P., Laghi, D., Lai, S., Laity, A. H., Lakkis, M. H., Lalande, E., Lalleman, M., Lalremruati, P. C., Landry, M., Lane, B. B., Lang, R. N., Lange, J., Lantz, B., La Rana, A., La Rosa, I., Lartaux-Vollard, A., Lasky, P. D., Lawrence, J., Lawrence, M. N., Laxen, M., Lazzarini, A., Lazzaro, C., Leaci, P., Lecoeuche, Y. K., Lee, H. M., Lee, H. W., Lee, K., Lee, R. -K., Lee, R., Lee, S., Lee, Y., Legred, I. N., Lehmann, J., Lehner, L., Jean, M. Le, Lemaître, A., Lenti, M., Leonardi, M., Lequime, M., Leroy, N., Lesovsky, M., Letendre, N., Lethuillier, M., Levin, S. E., Levin, Y., Leyde, K., Li, A. K. Y., Li, K. L., Li, T. G. F., Li, X., Li, Z., Lihos, A., Lin, C-Y., Lin, C. -Y., Lin, E. T., Lin, F., Lin, H., Lin, L. C. -C., Lin, Y. -C., Linde, F., Linker, S. D., Littenberg, T. B., Liu, A., Liu, G. C., Liu, Jian, Villarreal, F. Llamas, Llobera-Querol, J., Lo, R. K. L., Locquet, J. -P., London, L. T., Longo, A., Lopez, D., Portilla, M. Lopez, Lorenzini, M., Lorenzo-Medina, A., Loriette, V., Lormand, M., Losurdo, G., Lott IV, T. P., Lough, J. D., Loughlin, H. A., Lousto, C. O., Lowry, M. J., Lu, N., Lück, H., Lumaca, D., Lundgren, A. P., Lussier, A. W., Ma, L. -T., Ma, S., Ma'arif, M., Macas, R., Macedo, A., MacInnis, M., Maciy, R. R., Macleod, D. M., MacMillan, I. A. O., Macquet, A., Macri, D., Maeda, K., Maenaut, S., Hernandez, I. Magaña, Magare, S. S., Magazzù, C., Magee, R. M., Maggio, E., Maggiore, R., Magnozzi, M., Mahesh, M., Mahesh, S., Maini, M., Majhi, S., Majorana, E., Makarem, C. N., Makelele, E., Malaquias-Reis, J. A., Mali, U., Maliakal, S., Malik, A., Man, N., Mandic, V., Mangano, V., Mannix, B., Mansell, G. L., Mansingh, G., Manske, M., Mantovani, M., Mapelli, M., Marchesoni, F., Pina, D. Marín, Marion, F., Márka, S., Márka, Z., Markosyan, A. S., Markowitz, A., Maros, E., Marsat, S., Martelli, F., Martin, I. W., Martin, R. M., Martinez, B. B., Martinez, M., Martinez, V., Martini, A., Martinovic, K., Martins, J. C., Martynov, D. V., Marx, E. J., Massaro, L., Masserot, A., Masso-Reid, M., Mastrodicasa, M., Mastrogiovanni, S., Matcovich, T., Matiushechkina, M., Matsuyama, M., Mavalvala, N., Maxwell, N., McCarrol, G., McCarthy, R., McClelland, D. E., McCormick, S., McCuller, L., McEachin, S., McElhenny, C., McGhee, G. I., McGinn, J., McGowan, K. B. M., McIver, J., McLeod, A., McRae, T., Meacher, D., Meijer, Q., Melatos, A., Mellaerts, S., Menendez-Vazquez, A., Menoni, C. S., Mera, F., Mercer, R. A., Mereni, L., Merfeld, K., Merilh, E. L., Mérou, J. R., Merritt, J. D., Merzougui, M., Messenger, C., Messick, C., Meyer-Conde, M., Meylahn, F., Mhaske, A., Miani, A., Miao, H., Michaloliakos, I., Michel, C., Michimura, Y., Middleton, H., Miller, A. L., Miller, S., Millhouse, M., Milotti, E., Milotti, V., Minenkov, Y., Mio, N., Mir, Ll. M., Mirasola, L., Miravet-Tenés, M., Miritescu, C. -A., Mishra, A. K., Mishra, A., Mishra, C., Mishra, T., Mitchell, A. L., Mitchell, J. G., Mitra, S., Mitrofanov, V. P., Mittleman, R., Miyakawa, O., Miyamoto, S., Miyoki, S., Mo, G., Mobilia, L., Mohapatra, S. R. P., Mohite, S. R., Molina-Ruiz, M., Mondal, C., Mondin, M., Montani, M., Moore, C. J., Moraru, D., More, A., More, S., Moreno, G., Morgan, C., Morisaki, S., Moriwaki, Y., Morras, G., Moscatello, A., Mourier, P., Mours, B., Mow-Lowry, C. M., Muciaccia, F., Mukherjee, Arunava, Mukherjee, D., Mukherjee, Samanwaya, Mukherjee, Soma, Mukherjee, Subroto, Mukherjee, Suvodip, Mukund, N., Mullavey, A., Munch, J., Mundi, J., Mungioli, C. L., Oberg, W. R. Munn, Murakami, Y., Murakoshi, M., Murray, P. G., Muusse, S., Nabari, D., Nadji, S. L., Nagar, A., Nagarajan, N., Nagler, K. N., Nakagaki, K., Nakamura, K., Nakano, H., Nakano, M., Nandi, D., Napolano, V., Narayan, P., Nardecchia, I., Narikawa, T., Narola, H., Naticchioni, L., Nayak, R. K., Neilson, J., Nelson, A., Nelson, T. J. N., Nery, M., Neunzert, A., Ng, S., Quynh, L. Nguyen, Nichols, S. A., Nielsen, A. B., Nieradka, G., Niko, A., Nishino, Y., Nishizawa, A., Nissanke, S., Nitoglia, E., Niu, W., Nocera, F., Norman, M., North, C., Novak, J., Siles, J. F. Nuño, Nuttall, L. K., Obayashi, K., Oberling, J., O'Dell, J., Oertel, M., Offermans, A., Oganesyan, G., Oh, J. J., Oh, K., O'Hanlon, T., Ohashi, M., Ohkawa, M., Ohme, F., Oliveira, A. S., Oliveri, R., O'Neal, B., Oohara, K., O'Reilly, B., Ormsby, N. D., Orselli, M., O'Shaughnessy, R., O'Shea, S., Oshima, Y., Oshino, S., Ossokine, S., Osthelder, C., Ota, I., Ottaway, D. J., Ouzriat, A., Overmier, H., Owen, B. J., Pace, A. E., Pagano, R., Page, M. A., Pai, A., Pal, A., Pal, S., Palaia, M. A., Pálfi, M., Palma, P. P., Palomba, C., Palud, P., Pan, H., Pan, J., Pan, K. C., Panai, R., Panda, P. K., Pandey, S., Panebianco, L., Pang, P. T. H., Pannarale, F., Pannone, K. A., Pant, B. C., Panther, F. H., Paoletti, F., Paolone, A., Papalexakis, E. E., Papalini, L., Papigkiotis, G., Paquis, A., Parisi, A., Park, B. -J., Park, J., Parker, W., Pascale, G., Pascucci, D., Pasqualetti, A., Passaquieti, R., Passenger, L., Passuello, D., Patane, O., Pathak, D., Pathak, M., Patra, A., Patricelli, B., Patron, A. S., Paul, K., Paul, S., Payne, E., Pearce, T., Pedraza, M., Pegna, R., Pele, A., Arellano, F. E. Peña, Penn, S., Penuliar, M. D., Perego, A., Pereira, Z., Perez, J. J., Périgois, C., Perna, G., Perreca, A., Perret, J., Perriès, S., Perry, J. W., Pesios, D., Petracca, S., Petrillo, C., Pfeiffer, H. P., Pham, H., Pham, K. A., Phukon, K. S., Phurailatpam, H., Piarulli, M., Piccari, L., Piccinni, O. J., Pichot, M., Piendibene, M., Piergiovanni, F., Pierini, L., Pierra, G., Pierro, V., Pietrzak, M., Pillas, M., Pilo, F., Pinard, L., Pinto, I. M., Pinto, M., Piotrzkowski, B. J., Pirello, M., Pitkin, M. D., Placidi, A., Placidi, E., Planas, M. L., Plastino, W., Poggiani, R., Polini, E., Pompili, L., Poon, J., Porcelli, E., Porter, E. K., Posnansky, C., Poulton, R., Powell, J., Pracchia, M., Pradhan, B. K., Pradier, T., Prajapati, A. K., Prasai, K., Prasanna, R., Prasia, P., Pratten, G., Principe, G., Principe, M., Prodi, G. A., Prokhorov, L., Prosposito, P., Puecher, A., Pullin, J., Punturo, M., Puppo, P., Pürrer, M., Qi, H., Qin, J., Quéméner, G., Quetschke, V., Quigley, C., Quinonez, P. J., Raab, F. J., Raabith, S. S., Raaijmakers, G., Raja, S., Rajan, C., Rajbhandari, B., Ramirez, K. E., Vidal, F. A. Ramis, Ramos-Buades, A., Rana, D., Ranjan, S., Ransom, K., Rapagnani, P., Ratto, B., Rawat, S., Ray, A., Raymond, V., Razzano, M., Read, J., Payo, M. Recaman, Regimbau, T., Rei, L., Reid, S., Reitze, D. H., Relton, P., Renzini, A. I., Rettegno, P., Revenu, B., Reyes, R., Rezaei, A. S., Ricci, F., Ricci, M., Ricciardone, A., Richardson, J. W., Richardson, M., Rijal, A., Riles, K., Riley, H. K., Rinaldi, S., Rittmeyer, J., Robertson, C., Robinet, F., Robinson, M., Rocchi, A., Rolland, L., Rollins, J. G., Romano, A. E., Romano, R., Romero, A., Romero-Shaw, I. M., Romie, J. H., Ronchini, S., Roocke, T. J., Rosa, L., Rosauer, T. J., Rose, C. A., Rosińska, D., Ross, M. P., Rossello, M., Rowan, S., Roy, S. K., Roy, S., Rozza, D., Ruggi, P., Ruhama, N., Morales, E. Ruiz, Ruiz-Rocha, K., Sachdev, S., Sadecki, T., Sadiq, J., Saffarieh, P., Sah, M. R., Saha, S. S., Saha, S., Sainrat, T., Menon, S. Sajith, Sakai, K., Sakellariadou, M., Sakon, S., Salafia, O. S., Salces-Carcoba, F., Salconi, L., Saleem, M., Salemi, F., Sallé, M., Salvador, S., Sanchez, A., Sanchez, E. J., Sanchez, J. H., Sanchez, L. E., Sanchis-Gual, N., Sanders, J. R., Sänger, E. M., Santoliquido, F., Saravanan, T. R., Sarin, N., Sasaoka, S., Sasli, A., Sassi, P., Sassolas, B., Satari, H., Sato, R., Sato, Y., Sauter, O., Savage, R. L., Sawada, T., Sawant, H. L., Sayah, S., Scacco, V., Schaetzl, D., Scheel, M., Schiebelbein, A., Schiworski, M. G., Schmidt, P., Schmidt, S., Schnabel, R., Schneewind, M., Schofield, R. M. S., Schouteden, K., Schulte, B. W., Schutz, B. F., Schwartz, E., Scialpi, M., Scott, J., Scott, S. M., Seetharamu, T. C., Seglar-Arroyo, M., Sekiguchi, Y., Sellers, D., Sengupta, A. S., Sentenac, D., Seo, E. G., Seo, J. W., Sequino, V., Serra, M., Servignat, G., Sevrin, A., Shaffer, T., Shah, U. S., Shaikh, M. A., Shao, L., Sharma, A. K., Sharma, P., Sharma-Chaudhary, S., Shaw, M. R., Shawhan, P., Shcheblanov, N. S., Sheridan, E., Shikano, Y., Shikauchi, M., Shimode, K., Shinkai, H., Shiota, J., Shoemaker, D. H., Shoemaker, D. M., Short, R. W., ShyamSundar, S., Sider, A., Siegel, H., Sieniawska, M., Sigg, D., Silenzi, L., Simmonds, M., Singer, L. P., Singh, A., Singh, D., Singh, M. K., Singh, S., Singha, A., Sintes, A. M., Sipala, V., Skliris, V., Slagmolen, B. J. J., Slaven-Blair, T. J., Smetana, J., Smith, J. R., Smith, L., Smith, R. J. E., Smith, W. J., Soldateschi, J., Somiya, K., Song, I., Soni, K., Soni, S., Sordini, V., Sorrentino, F., Sorrentino, N., Sotani, H., Soulard, R., Southgate, A., Spagnuolo, V., Spencer, A. P., Spera, M., Spinicelli, P., Spoon, J. B., Sprague, C. A., Srivastava, A. K., Stachurski, F., Steer, D. A., Steinlechner, J., Steinlechner, S., Stergioulas, N., Stevens, P., StPierre, M., Stratta, G., Strong, M. D., Strunk, A., Sturani, R., Stuver, A. L., Suchenek, M., Sudhagar, S., Sueltmann, N., Suleiman, L., Sullivan, K. D., Sun, L., Sunil, S., Suresh, J., Sutton, P. J., Suzuki, T., Suzuki, Y., Swinkels, B. L., Syx, A., Szczepańczyk, M. J., Szewczyk, P., Tacca, M., Tagoshi, H., Tait, S. C., Takahashi, H., Takahashi, R., Takamori, A., Takase, T., Takatani, K., Takeda, H., Takeshita, K., Talbot, C., Tamaki, M., Tamanini, N., Tanabe, D., Tanaka, K., Tanaka, S. J., Tanaka, T., Tang, D., Tanioka, S., Tanner, D. B., Tao, L., Tapia, R. D., Martín, E. N. Tapia San, Tarafder, R., Taranto, C., Taruya, A., Tasson, J. D., Teloi, M., Tenorio, R., Themann, H., Theodoropoulos, A., Thirugnanasambandam, M. P., Thomas, L. M., Thomas, M., Thomas, P., Thompson, J. E., Thondapu, S. R., Thorne, K. A., Thrane, E., Tissino, J., Tiwari, A., Tiwari, P., Tiwari, S., Tiwari, V., Todd, M. R., Toivonen, A. M., Toland, K., Tolley, A. E., Tomaru, T., Tomita, K., Tomura, T., Tong-Yu, C., Toriyama, A., Toropov, N., Torres-Forné, A., Torrie, C. I., Toscani, M., Melo, I. Tosta e, Tournefier, E., Trapananti, A., Travasso, F., Traylor, G., Trevor, M., Tringali, M. C., Tripathee, A., Troian, G., Troiano, L., Trovato, A., Trozzo, L., Trudeau, R. J., Tsang, T. T. L., Tso, R., Tsuchida, S., Tsukada, L., Tsutsui, T., Turbang, K., Turconi, M., Turski, C., Ubach, H., Uchikata, N., Uchiyama, T., Udall, R. P., Uehara, T., Uematsu, M., Ueno, K., Ueno, S., Undheim, V., Ushiba, T., Vacatello, M., Vahlbruch, H., Vaidya, N., Vajente, G., Vajpeyi, A., Valdes, G., Valencia, J., Valentini, M., Vallejo-Peña, S. A., Vallero, S., Valsan, V., van Bakel, N., van Beuzekom, M., van Dael, M., Brand, J. F. J. van den, Broeck, C. Van Den, Vander-Hyde, D. C., van der Sluys, M., Van de Walle, A., van Dongen, J., Vandra, K., van Haevermaet, H., van Heijningen, J. V., Van Hove, P., VanKeuren, M., Vanosky, J., van Putten, M. H. P. M., van Ranst, Z., van Remortel, N., Vardaro, M., Vargas, A. F., Varghese, J. J., Varma, V., Vasúth, M., Vecchio, A., Vedovato, G., Veitch, J., Veitch, P. J., Venikoudis, S., Venneberg, J., Verdier, P., Verkindt, D., Verma, B., Verma, P., Verma, Y., Vermeulen, S. M., Vetrano, F., Veutro, A., Vibhute, A. M., Viceré, A., Vidyant, S., Viets, A. D., Vijaykumar, A., Vilkha, A., Villa-Ortega, V., Vincent, E. T., Vinet, J. -Y., Viret, S., Virtuoso, A., Vitale, S., Vives, A., Vocca, H., Voigt, D., von Reis, E. R. G., von Wrangel, J. S. A., Vyatchanin, S. P., Wade, L. E., Wade, M., Wagner, K. J., Wajid, A., Walker, M., Wallace, G. S., Wallace, L., Wang, H., Wang, J. Z., Wang, W. H., Wang, Z., Waratkar, G., Warner, J., Was, M., Washimi, T., Washington, N. Y., Watarai, D., Wayt, K. E., Weaver, B. R., Weaver, B., Weaving, C. R., Webster, S. A., Weinert, M., Weinstein, A. J., Weiss, R., Wellmann, F., Wen, L., Weßels, P., Wette, K., Whelan, J. T., Whiting, B. F., Whittle, C., Wildberger, J. B., Wilk, O. S., Wilken, D., Wilkin, A. T., Willadsen, D. J., Willetts, K., Williams, D., Williams, M. J., Williams, N. S., Willis, J. L., Willke, B., Wils, M., Winterflood, J., Wipf, C. C., Woan, G., Woehler, J., Wofford, J. K., Wolfe, N. E., Wong, H. T., Wong, H. W. Y., Wong, I. C. F., Wright, J. L., Wright, M., Wu, C., Wu, D. S., Wu, H., Wuchner, E., Wysocki, D. M., Xu, V. A., Xu, Y., Yadav, N., Yamamoto, H., Yamamoto, K., Yamamoto, T. S., Yamamoto, T., Yamamura, S., Yamazaki, R., Yan, S., Yan, T., Yang, F. W., Yang, F., Yang, K. Z., Yang, Y., Yarbrough, Z., Yasui, H., Yeh, S. -W., Yelikar, A. B., Yin, X., Yokoyama, J., Yokozawa, T., Yoo, J., Yu, H., Yuan, S., Yuzurihara, H., Zadrożny, A., Zanolin, M., Zeeshan, M., Zelenova, T., Zendri, J. -P., Zeoli, M., Zerrad, M., Zevin, M., Zhang, A. C., Zhang, L., Zhang, R., Zhang, T., Zhang, Y., Zhao, C., Zhao, Yue, Zhao, Yuhang, Zheng, Y., Zhong, H., Zhou, R., Zhu, X. -J., Zhu, Z. -H., Zimmerman, A. B., Zucker, M. E., and Zweizig, J.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We present the results of a search for gravitational-wave transients associated with core-collapse supernova SN 2023ixf, which was observed in the galaxy Messier 101 via optical emission on 2023 May 19th, during the LIGO-Virgo-KAGRA 15th Engineering Run. We define a five-day on-source window during which an accompanying gravitational-wave signal may have occurred. No gravitational waves have been identified in data when at least two gravitational-wave observatories were operating, which covered $\sim 14\%$ of this five-day window. We report the search detection efficiency for various possible gravitational-wave emission models. Considering the distance to M101 (6.7 Mpc), we derive constraints on the gravitational-wave emission mechanism of core-collapse supernovae across a broad frequency spectrum, ranging from 50 Hz to 2 kHz where we assume the GW emission occurred when coincident data are available in the on-source window. Considering an ellipsoid model for a rotating proto-neutron star, our search is sensitive to gravitational-wave energy $1 \times 10^{-5} M_{\odot} c^2$ and luminosity $4 \times 10^{-5} M_{\odot} c^2/\text{s}$ for a source emitting at 50 Hz. These constraints are around an order of magnitude more stringent than those obtained so far with gravitational-wave data. The constraint on the ellipticity of the proto-neutron star that is formed is as low as $1.04$, at frequencies above $1200$ Hz, surpassing results from SN 2019ejj., Comment: Main paper: 6 pages, 4 figures and 1 table. Total with appendices: 20 pages, 4 figures, and 1 table
- Published
- 2024
26. Enhancing Crowdsourced Audio for Text-to-Speech Models
- Author
-
Giraldo, José, Llopart-Font, Martí, Peiró-Lilja, Alex, Armentano-Oller, Carme, Sant, Gerard, and Külebi, Baybars
- Subjects
Electrical Engineering and Systems Science - Audio and Speech Processing ,Computer Science - Sound - Abstract
High-quality audio data is a critical prerequisite for training robust text-to-speech models, which often limits the use of opportunistic or crowdsourced datasets. This paper presents an approach to overcome this limitation by implementing a denoising pipeline on the Catalan subset of Commonvoice, a crowd-sourced corpus known for its inherent noise and variability. The pipeline incorporates an audio enhancement phase followed by a selective filtering strategy. We developed an automatic filtering mechanism leveraging Non-Intrusive Speech Quality Assessment (NISQA) models to identify and retain the highest quality samples post-enhancement. To evaluate the efficacy of this approach, we trained a state of the art diffusion-based TTS model on the processed dataset. The results show a significant improvement, with an increase of 0.4 in the UTMOS Score compared to the baseline dataset without enhancement. This methodology shows promise for expanding the utility of crowdsourced data in TTS applications, particularly for mid to low resource languages like Catalan., Comment: Submitted to Iberspeech 2024
- Published
- 2024
27. The Atacama Cosmology Telescope DR6 and DESI: Structure growth measurements from the cross-correlation of DESI Legacy Imaging galaxies and CMB lensing from ACT DR6 and Planck PR4
- Author
-
Qu, Frank J., Hang, Qianjun, Farren, Gerrit, Bolliet, Boris, Aguilar, Jessica Nicole, Ahlen, Steven, Alam, Shadab, Brooks, David, Cai, Yan-Chuan, Calabrese, Erminia, Claybaugh, Todd, de la Macorra, Axel, Devlin, Mark J., Doel, Peter, Embil-Villagra, Carmen, Ferraro, Simone, Font-Ribera, Andreu, Forero-Romero, Jaime E., Gaztañaga, Enrique, Gluscevic, Vera, Gontcho, Satya Gontcho A, Gutierrez, Gaston, Howlett, Cullan, Kehoe, Robert, Kim, Joshua, Kremin, Anthony, Lambert, Andrew, Landriau, Martin, Guillou, Laurent Le, Levi, Michael, Louis, Thibaut, Meisner, Aaron, Miquel, Ramon, Moustakas, John, Newman, Jeffrey A., Niz, Gustavo, Peacock, John, Percival, Will, Poppett, Claire, Prada, Francisco, Pérez-Ràfols, Ignasi, Rossi, Graziano, Sanchez, Eusebio, Schlegel, David, Sehgal, Neelima, Shaikh, Shabbir, Sherwin, Blake, Sifón, Cristóbal, Schubnell, Michael, Sprayberry, David, Tarlé, Gregory, Weaver, Benjamin Alan, Wollack, Edward J., and Zou, Hu
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We measure the growth of cosmic density fluctuations on large scales and across the redshift range $0.3
- Published
- 2024
28. A search using GEO600 for gravitational waves coincident with fast radio bursts from SGR 1935+2154
- Author
-
The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, Abac, A. G., Abbott, R., Abouelfettouh, I., Acernese, F., Ackley, K., Adhicary, S., Adhikari, N., Adhikari, R. X., Adkins, V. K., Agarwal, D., Agathos, M., Abchouyeh, M. Aghaei, Aguiar, O. D., Aguilar, I., Aiello, L., Ain, A., Ajith, P., Akutsu, T., Albanesi, S., Alfaidi, R. A., Al-Jodah, A., Alléné, C., Allocca, A., Al-Shammari, S., Altin, P. A., Alvarez-Lopez, S., Amato, A., Amez-Droz, L., Amorosi, A., Amra, C., Ananyeva, A., Anderson, S. B., Anderson, W. G., Andia, M., Ando, M., Andrade, T., Andres, N., Andrés-Carcasona, M., Andrić, T., Anglin, J., Ansoldi, S., Antelis, J. M., Antier, S., Aoumi, M., Appavuravther, E. Z., Appert, S., Apple, S. K., Arai, K., Araya, A., Araya, M. C., Areeda, J. S., Argianas, L., Aritomi, N., Armato, F., Arnaud, N., Arogeti, M., Aronson, S. M., Ashton, G., Aso, Y., Assiduo, M., Melo, S. Assis de Souza, Aston, S. M., Astone, P., Attadio, F., Aubin, F., AultONeal, K., Avallone, G., Azrad, D., Babak, S., Badaracco, F., Badger, C., Bae, S., Bagnasco, S., Bagui, E., Baier, J. G., Baiotti, L., Bajpai, R., Baka, T., Ball, M., Ballardin, G., Ballmer, S. W., Banagiri, S., Banerjee, B., Bankar, D., Baral, P., Barayoga, J. C., Barish, B. C., Barker, D., Barneo, P., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barta, D., Bartoletti, A. M., Barton, M. A., Bartos, I., Basak, S., Basalaev, A., Bassiri, R., Basti, A., Bates, D. E., Bawaj, M., Baxi, P., Bayley, J. C., Baylor, A. C., Baynard II, P. A., Bazzan, M., Bedakihale, V. M., Beirnaert, F., Bejger, M., Belardinelli, D., Bell, A. S., Benedetto, V., Benoit, W., Bentley, J. D., Yaala, M. Ben, Bera, S., Berbel, M., Bergamin, F., Berger, B. K., Bernuzzi, S., Beroiz, M., Bersanetti, D., Bertolini, A., Betzwieser, J., Beveridge, D., Bevins, N., Bhandare, R., Bhardwaj, U., Bhatt, R., Bhattacharjee, D., Bhaumik, S., Bhowmick, S., Bianchi, A., Bilenko, I. A., Billingsley, G., Binetti, A., Bini, S., Birnholtz, O., Biscoveanu, S., Bisht, A., Bitossi, M., Bizouard, M. -A., Blackburn, J. K., Blagg, L. A., Blair, C. D., Blair, D. G., Bobba, F., Bode, N., Boileau, G., Boldrini, M., Bolingbroke, G. N., Bolliand, A., Bonavena, L. D., Bondarescu, R., Bondu, F., Bonilla, E., Bonilla, M. S., Bonino, A., Bonnand, R., Booker, P., Borchers, A., Boschi, V., Bose, S., Bossilkov, V., Boudart, V., Boudon, A., Bozzi, A., Bradaschia, C., Brady, P. R., Braglia, M., Branch, A., Branchesi, M., Brandt, J., Braun, I., Breschi, M., Briant, T., Brillet, A., Brinkmann, M., Brockill, P., Brockmueller, E., Brooks, A. F., Brown, B. C., Brown, D. D., Brozzetti, M. L., Brunett, S., Bruno, G., Bruntz, R., Bryant, J., Bucci, F., Buchanan, J., Bulashenko, O., Bulik, T., Bulten, H. J., Buonanno, A., Burtnyk, K., Buscicchio, R., Buskulic, D., Buy, C., Byer, R. L., Davies, G. S. Cabourn, Cabras, G., Cabrita, R., Cáceres-Barbosa, V., Cadonati, L., Cagnoli, G., Cahillane, C., Bustillo, J. Calderón, Callister, T. A., Calloni, E., Camp, J. B., Canepa, M., Santoro, G. Caneva, Cannon, K. C., Cao, H., Capistran, L. A., Capocasa, E., Capote, E., Carapella, G., Carbognani, F., Carlassara, M., Carlin, J. B., Carpinelli, M., Carrillo, G., Carter, J. J., Carullo, G., Diaz, J. Casanueva, Casentini, C., Castro-Lucas, S. Y., Caudill, S., Cavaglià, M., Cavalieri, R., Cella, G., Cerdá-Durán, P., Cesarini, E., Chaibi, W., Chakraborty, P., Subrahmanya, S. Chalathadka, Chan, J. C. L., Chan, M., Chandra, K., Chang, R. -J., Chao, S., Charlton, E. L., Charlton, P., Chassande-Mottin, E., Chatterjee, C., Chatterjee, Debarati, Chatterjee, Deep, Chaturvedi, M., Chaty, S., Chen, A., Chen, A. H. -Y., Chen, D., Chen, H., Chen, H. Y., Chen, J., Chen, K. H., Chen, Y., Chen, Yanbei, Chen, Yitian, Cheng, H. P., Chessa, P., Cheung, H. T., Cheung, S. Y., Chiadini, F., Chiarini, G., Chierici, R., Chincarini, A., Chiofalo, M. L., Chiummo, A., Chou, C., Choudhary, S., Christensen, N., Chua, S. S. Y., Chugh, P., Ciani, G., Ciecielag, P., Cieślar, M., Cifaldi, M., Ciolfi, R., Clara, F., Clark, J. A., Clarke, J., Clarke, T. A., Clearwater, P., Clesse, S., Coccia, E., Codazzo, E., Cohadon, P. -F., Colace, S., Colleoni, M., Collette, C. G., Collins, J., Colloms, S., Colombo, A., Colpi, M., Compton, C. M., Connolly, G., Conti, L., Corbitt, T. R., Cordero-Carrión, I., Corezzi, S., Cornish, N. J., Corsi, A., Cortese, S., Costa, C. A., Cottingham, R., Coughlin, M. W., Couineaux, A., Coulon, J. -P., Countryman, S. T., Coupechoux, J. -F., Couvares, P., Coward, D. M., Cowart, M. J., Coyne, R., Craig, K., Creed, R., Creighton, J. D. E., Creighton, T. D., Cremonese, P., Criswell, A. W., Crockett-Gray, J. C. G., Crook, S., Crouch, R., Csizmazia, J., Cudell, J. R., Cullen, T. J., Cumming, A., Cuoco, E., Cusinato, M., Dabadie, P., Canton, T. Dal, Dall'Osso, S., Pra, S. Dal, Dálya, G., D'Angelo, B., Danilishin, S., D'Antonio, S., Danzmann, K., Darroch, K. E., Dartez, L. P., Dasgupta, A., Datta, S., Dattilo, V., Daumas, A., Davari, N., Dave, I., Davenport, A., Davier, M., Davies, T. F., Davis, D., Davis, L., Davis, M. C., Davis, P. J., Dax, M., De Bolle, J., Deenadayalan, M., Degallaix, J., De Laurentis, M., Deléglise, S., De Lillo, F., Dell'Aquila, D., Del Pozzo, W., De Marco, F., De Matteis, F., D'Emilio, V., Demos, N., Dent, T., Depasse, A., DePergola, N., De Pietri, R., De Rosa, R., De Rossi, C., DeSalvo, R., De Simone, R., Dhani, A., Diab, R., Díaz, M. C., Di Cesare, M., Dideron, G., Didio, N. A., Dietrich, T., Di Fiore, L., Di Fronzo, C., Di Giovanni, M., Di Girolamo, T., Diksha, D., Di Michele, A., Ding, J., Di Pace, S., Di Palma, I., Di Renzo, F., Divyajyoti, Dmitriev, A., Doctor, Z., Dohmen, E., Doleva, P. P., Dominguez, D., D'Onofrio, L., Donovan, F., Dooley, K. L., Dooney, T., Doravari, S., Dorosh, O., Drago, M., Driggers, J. C., Ducoin, J. -G., Dunn, L., Dupletsa, U., D'Urso, D., Duval, H., Duverne, P. -A., Dwyer, S. E., Eassa, C., Ebersold, M., Eckhardt, T., Eddolls, G., Edelman, B., Edo, T. B., Edy, O., Effler, A., Eichholz, J., Einsle, H., Eisenmann, M., Eisenstein, R. A., Ejlli, A., Eleveld, R. M., Emma, M., Endo, K., Engl, A. J., Enloe, E., Errico, L., Essick, R. C., Estellés, H., Estevez, D., Etzel, T., Evans, M., Evstafyeva, T., Ewing, B. E., Ezquiaga, J. M., Fabrizi, F., Faedi, F., Fafone, V., Fairhurst, S., Farah, A. M., Farr, B., Farr, W. M., Favaro, G., Favata, M., Fays, M., Fazio, M., Feicht, J., Fejer, M. M., Felicetti, R. ., Fenyvesi, E., Ferguson, D. L., Ferraiuolo, S., Ferrante, I., Ferreira, T. A., Fidecaro, F., Figura, P., Fiori, A., Fiori, I., Fishbach, M., Fisher, R. P., Fittipaldi, R., Fiumara, V., Flaminio, R., Fleischer, S. M., Fleming, L. S., Floden, E., Foley, E. M., Fong, H., Font, J. A., Fornal, B., Forsyth, P. W. F., Franceschetti, K., Franchini, N., Frasca, S., Frasconi, F., Mascioli, A. Frattale, Frei, Z., Freise, A., Freitas, O., Frey, R., Frischhertz, W., Fritschel, P., Frolov, V. V., Fronzé, G. G., Fuentes-Garcia, M., Fujii, S., Fujimori, T., Fulda, P., Fyffe, M., Gadre, B., Gair, J. R., Galaudage, S., Galdi, V., Gallagher, H., Gallardo, S., Gallego, B., Gamba, R., Gamboa, A., Ganapathy, D., Ganguly, A., Garaventa, B., García-Bellido, J., Núñez, C. García, García-Quirós, C., Gardner, J. W., Gardner, K. A., Gargiulo, J., Garron, A., Garufi, F., Gasbarra, C., Gateley, B., Gayathri, V., Gemme, G., Gennai, A., Gennari, V., George, J., George, R., Gerberding, O., Gergely, L., Ghonge, S., Ghosh, Archisman, Ghosh, Sayantan, Ghosh, Shaon, Ghosh, Shrobana, Ghosh, Suprovo, Ghosh, Tathagata, Giacoppo, L., Giaime, J. A., Giardina, K. D., Gibson, D. R., Gibson, D. T., Gier, C., Giri, P., Gissi, F., Gkaitatzis, S., Glanzer, J., Glotin, F., Godfrey, J., Godwin, P., Goebbels, N. L., Goetz, E., Golomb, J., Lopez, S. Gomez, Goncharov, B., Gong, Y., González, G., Goodarzi, P., Goode, S., Goodwin-Jones, A. W., Gosselin, M., Göttel, A. S., Gouaty, R., Gould, D. W., Govorkova, K., Goyal, S., Grace, B., Grado, A., Graham, V., Granados, A. E., Granata, M., Granata, V., Gras, S., Grassia, P., Gray, A., Gray, C., Gray, R., Greco, G., Green, A. C., Green, S. M., Green, S. R., Gretarsson, A. M., Gretarsson, E. M., Griffith, D., Griffiths, W. L., Griggs, H. L., Grignani, G., Grimaldi, A., Grimaud, C., Grote, H., Guerra, D., Guetta, D., Guidi, G. M., Guimaraes, A. R., Gulati, H. K., Gulminelli, F., Gunny, A. M., Guo, H., Guo, W., Guo, Y., Gupta, Anchal, Gupta, Anuradha, Gupta, Ish, Gupta, N. C., Gupta, P., Gupta, S. K., Gupta, T., Gupte, N., Gurs, J., Gutierrez, N., Guzman, F., H, H. -Y., Haba, D., Haberland, M., Haino, S., Hall, E. D., Hamilton, E. Z., Hammond, G., Han, W. -B., Haney, M., Hanks, J., Hanna, C., Hannam, M. D., Hannuksela, O. A., Hanselman, A. G., Hansen, H., Hanson, J., Harada, R., Hardison, A. R., Haris, K., Harmark, T., Harms, J., Harry, G. M., Harry, I. W., Hart, J., Haskell, B., Haster, C. -J., Hathaway, J. S., Haughian, K., Hayakawa, H., Hayama, K., Hayes, R., Heffernan, A., Heidmann, A., Heintze, M. C., Heinze, J., Heinzel, J., Heitmann, H., Hellman, F., Hello, P., Helmling-Cornell, A. F., Hemming, G., Henderson-Sapir, O., Hendry, M., Heng, I. S., Hennes, E., Henshaw, C., Hertog, T., Heurs, M., Hewitt, A. L., Heyns, J., Higginbotham, S., Hild, S., Hill, S., Himemoto, Y., Hirata, N., Hirose, C., Ho, W. C. G., Hoang, S., Hochheim, S., Hofman, D., Holland, N. A., Holley-Bockelmann, K., Holmes, Z. J., Holz, D. E., Honet, L., Hong, C., Hornung, J., Hoshino, S., Hough, J., Hourihane, S., Howell, E. J., Hoy, C. G., Hrishikesh, C. A., Hsieh, H. -F., Hsiung, C., Hsu, H. C., Hsu, W. -F., Hu, P., Hu, Q., Huang, H. Y., Huang, Y. -J., Huddart, A. D., Hughey, B., Hui, D. C. Y., Hui, V., Husa, S., Huxford, R., Huynh-Dinh, T., Iampieri, L., Iandolo, G. A., Ianni, M., Iess, A., Imafuku, H., Inayoshi, K., Inoue, Y., Iorio, G., Iqbal, M. H., Irwin, J., Ishikawa, R., Isi, M., Ismail, M. A., Itoh, Y., Iwanaga, H., Iwaya, M., Iyer, B. R., JaberianHamedan, V., Jacquet, C., Jacquet, P. -E., Jadhav, S. J., Jadhav, S. P., Jain, T., James, A. L., James, P. A., Jamshidi, R., Janquart, J., Janssens, K., Janthalur, N. N., Jaraba, S., Jaranowski, P., Jaume, R., Javed, W., Jennings, A., Jia, W., Jiang, J., Kubisz, J., Johanson, C., Johns, G. R., Johnson, N. A., Johnston, M. C., Johnston, R., Johny, N., Jones, D. H., Jones, D. I., Jones, R., Jose, S., Joshi, P., Ju, L., Jung, K., Junker, J., Juste, V., Kajita, T., Kaku, I., Kalaghatgi, C., Kalogera, V., Kamiizumi, M., Kanda, N., Kandhasamy, S., Kang, G., Kanner, J. B., Kapadia, S. J., Kapasi, D. P., Karat, S., Karathanasis, C., Kashyap, R., Kasprzack, M., Kastaun, W., Kato, T., Katsavounidis, E., Katzman, W., Kaushik, R., Kawabe, K., Kawamoto, R., Kazemi, A., Keitel, D., Kelley-Derzon, J., Kennington, J., Kesharwani, R., Key, J. S., Khadela, R., Khadka, S., Khalili, F. Y., Khan, F., Khan, I., Khanam, T., Khursheed, M., Khusid, N. M., Kiendrebeogo, W., Kijbunchoo, N., Kim, C., Kim, J. C., Kim, K., Kim, M. H., Kim, S., Kim, Y. -M., Kimball, C., Kinley-Hanlon, M., Kinnear, M., Kissel, J. S., Klimenko, S., Knee, A. M., Knust, N., Kobayashi, K., Koch, P., Koehlenbeck, S. M., Koekoek, G., Kohri, K., Kokeyama, K., Koley, S., Kolitsidou, P., Kolstein, M., Komori, K., Kong, A. K. H., Kontos, A., Korobko, M., Kossak, R. V., Kou, X., Koushik, A., Kouvatsos, N., Kovalam, M., Kozak, D. B., Kranzhoff, S. L., Kringel, V., Krishnendu, N. V., Królak, A., Kruska, K., Kuehn, G., Kuijer, P., Kulkarni, S., Ramamohan, A. Kulur, Kumar, A., Kumar, Praveen, Kumar, Prayush, Kumar, Rahul, Kumar, Rakesh, Kume, J., Kuns, K., Kuntimaddi, N., Kuroyanagi, S., Kurth, N. J., Kuwahara, S., Kwak, K., Kwan, K., Kwok, J., Lacaille, G., Lagabbe, P., Laghi, D., Lai, S., Laity, A. H., Lakkis, M. H., Lalande, E., Lalleman, M., Lalremruati, P. C., Landry, M., Lane, B. B., Lang, R. N., Lange, J., Lantz, B., La Rana, A., La Rosa, I., Lartaux-Vollard, A., Lasky, P. D., Lawrence, J., Lawrence, M. N., Laxen, M., Lazzarini, A., Lazzaro, C., Leaci, P., Lecoeuche, Y. K., Lee, H. M., Lee, H. W., Lee, K., Lee, R. -K., Lee, R., Lee, S., Lee, Y., Legred, I. N., Lehmann, J., Lehner, L., Jean, M. Le, Lemaître, A., Lenti, M., Leonardi, M., Lequime, M., Leroy, N., Lesovsky, M., Letendre, N., Lethuillier, M., Levin, S. E., Levin, Y., Leyde, K., Li, A. K. Y., Li, K. L., Li, T. G. F., Li, X., Li, Z., Lihos, A., Lin, C-Y., Lin, C. -Y., Lin, E. T., Lin, F., Lin, H., Lin, L. C. -C., Lin, Y. -C., Linde, F., Linker, S. D., Littenberg, T. B., Liu, A., Liu, G. C., Liu, Jian, Villarreal, F. Llamas, Llobera-Querol, J., Lo, R. K. L., Locquet, J. -P., London, L. T., Longo, A., Lopez, D., Portilla, M. Lopez, Lorenzini, M., Lorenzo-Medina, A., Loriette, V., Lormand, M., Losurdo, G., Lott IV, T. P., Lough, J. D., Loughlin, H. A., Lousto, C. O., Lowry, M. J., Lu, N., Lück, H., Lumaca, D., Lundgren, A. P., Lussier, A. W., Ma, L. -T., Ma, S., Ma'arif, M., Macas, R., Macedo, A., MacInnis, M., Maciy, R. R., Macleod, D. M., MacMillan, I. A. O., Macquet, A., Macri, D., Maeda, K., Maenaut, S., Hernandez, I. Magaña, Magare, S. S., Magazzù, C., Magee, R. M., Maggio, E., Maggiore, R., Magnozzi, M., Mahesh, M., Mahesh, S., Maini, M., Majhi, S., Majorana, E., Makarem, C. N., Makelele, E., Malaquias-Reis, J. A., Mali, U., Maliakal, S., Malik, A., Man, N., Mandic, V., Mangano, V., Mannix, B., Mansell, G. L., Mansingh, G., Manske, M., Mantovani, M., Mapelli, M., Marchesoni, F., Pina, D. Marín, Marion, F., Márka, S., Márka, Z., Markosyan, A. S., Markowitz, A., Maros, E., Marsat, S., Martelli, F., Martin, I. W., Martin, R. M., Martinez, B. B., Martinez, M., Martinez, V., Martini, A., Martinovic, K., Martins, J. C., Martynov, D. V., Marx, E. J., Massaro, L., Masserot, A., Masso-Reid, M., Mastrodicasa, M., Mastrogiovanni, S., Matcovich, T., Matiushechkina, M., Matsuyama, M., Mavalvala, N., Maxwell, N., McCarrol, G., McCarthy, R., McCormick, S., McCuller, L., McEachin, S., McElhenny, C., McGhee, G. I., McGinn, J., McGowan, K. B. M., McIver, J., McLeod, A., McRae, T., Meacher, D., Meijer, Q., Melatos, A., Mellaerts, S., Menendez-Vazquez, A., Menoni, C. S., Mera, F., Mercer, R. A., Mereni, L., Merfeld, K., Merilh, E. L., Mérou, J. R., Merritt, J. D., Merzougui, M., Messenger, C., Messick, C., Meyer-Conde, M., Meylahn, F., Mhaske, A., Miani, A., Miao, H., Michaloliakos, I., Michel, C., Michimura, Y., Middleton, H., Miller, A. L., Miller, S., Millhouse, M., Milotti, E., Milotti, V., Minenkov, Y., Mio, N., Mir, Ll. M., Mirasola, L., Miravet-Tenés, M., Miritescu, C. -A., Mishra, A. K., Mishra, A., Mishra, C., Mishra, T., Mitchell, A. L., Mitchell, J. G., Mitra, S., Mitrofanov, V. P., Mittleman, R., Miyakawa, O., Miyamoto, S., Miyoki, S., Mo, G., Mobilia, L., Mohapatra, S. R. P., Mohite, S. R., Molina-Ruiz, M., Mondal, C., Mondin, M., Montani, M., Moore, C. J., Moraru, D., More, A., More, S., Moreno, G., Morgan, C., Morisaki, S., Moriwaki, Y., Morras, G., Moscatello, A., Mourier, P., Mours, B., Mow-Lowry, C. M., Muciaccia, F., Mukherjee, Arunava, Mukherjee, D., Mukherjee, Samanwaya, Mukherjee, Soma, Mukherjee, Subroto, Mukherjee, Suvodip, Mukund, N., Mullavey, A., Munch, J., Mundi, J., Mungioli, C. L., Oberg, W. R. Munn, Murakami, Y., Murakoshi, M., Murray, P. G., Muusse, S., Nabari, D., Nadji, S. L., Nagar, A., Nagarajan, N., Nagler, K. N., Nakagaki, K., Nakamura, K., Nakano, H., Nakano, M., Nandi, D., Napolano, V., Narayan, P., Nardecchia, I., Narola, H., Naticchioni, L., Nayak, R. K., Neilson, J., Nelson, A., Nelson, T. J. N., Nery, M., Neunzert, A., Ng, S., Quynh, L. Nguyen, Nichols, S. A., Nielsen, A. B., Nieradka, G., Niko, A., Nishino, Y., Nishizawa, A., Nissanke, S., Nitoglia, E., Niu, W., Nocera, F., Norman, M., North, C., Novak, J., Siles, J. F. Nuño, Nuttall, L. K., Obayashi, K., Oberling, J., O'Dell, J., Oertel, M., Offermans, A., Oganesyan, G., Oh, J. J., Oh, K., O'Hanlon, T., Ohashi, M., Ohkawa, M., Ohme, F., Oliveira, A. S., Oliveri, R., O'Neal, B., Oohara, K., O'Reilly, B., Ormsby, N. D., Orselli, M., O'Shaughnessy, R., O'Shea, S., Oshima, Y., Oshino, S., Ossokine, S., Osthelder, C., Ota, I., Ottaway, D. J., Ouzriat, A., Overmier, H., Owen, B. J., Pace, A. E., Pagano, R., Page, M. A., Pai, A., Pal, A., Pal, S., Palaia, M. A., Pálfi, M., Palma, P. P., Palomba, C., Palud, P., Pan, H., Pan, J., Pan, K. C., Panai, R., Panda, P. K., Pandey, S., Panebianco, L., Pang, P. T. H., Pannarale, F., Pannone, K. A., Pant, B. C., Panther, F. H., Paoletti, F., Paolone, A., Papalexakis, E. E., Papalini, L., Papigkiotis, G., Paquis, A., Parisi, A., Park, B. -J., Park, J., Parker, W., Pascale, G., Pascucci, D., Pasqualetti, A., Passaquieti, R., Passenger, L., Passuello, D., Patane, O., Pathak, D., Pathak, M., Patra, A., Patricelli, B., Patron, A. S., Paul, K., Paul, S., Payne, E., Pearce, T., Pedraza, M., Pegna, R., Pele, A., Arellano, F. E. Peña, Penn, S., Penuliar, M. D., Perego, A., Pereira, Z., Perez, J. J., Périgois, C., Perna, G., Perreca, A., Perret, J., Perriès, S., Perry, J. W., Pesios, D., Petracca, S., Petrillo, C., Pfeiffer, H. P., Pham, H., Pham, K. A., Phukon, K. S., Phurailatpam, H., Piarulli, M., Piccari, L., Piccinni, O. J., Pichot, M., Piendibene, M., Piergiovanni, F., Pierini, L., Pierra, G., Pierro, V., Pietrzak, M., Pillas, M., Pilo, F., Pinard, L., Pinto, I. M., Pinto, M., Piotrzkowski, B. J., Pirello, M., Pitkin, M. D., Placidi, A., Placidi, E., Planas, M. L., Plastino, W., Poggiani, R., Polini, E., Pompili, L., Poon, J., Porcelli, E., Porter, E. K., Posnansky, C., Poulton, R., Powell, J., Pracchia, M., Pradhan, B. K., Pradier, T., Prajapati, A. K., Prasai, K., Prasanna, R., Prasia, P., Pratten, G., Principe, G., Principe, M., Prodi, G. A., Prokhorov, L., Prosposito, P., Puecher, A., Pullin, J., Punturo, M., Puppo, P., Pürrer, M., Qi, H., Qin, J., Quéméner, G., Quetschke, V., Quigley, C., Quinonez, P. J., Quitzow-James, R., Raab, F. J., Raabith, S. S., Raaijmakers, G., Raja, S., Rajan, C., Rajbhandari, B., Ramirez, K. E., Vidal, F. A. Ramis, Ramos-Buades, A., Rana, D., Ranjan, S., Ransom, K., Rapagnani, P., Ratto, B., Rawat, S., Ray, A., Raymond, V., Razzano, M., Read, J., Payo, M. Recaman, Regimbau, T., Rei, L., Reid, S., Reitze, D. H., Relton, P., Renzini, A. I., Rettegno, P., Revenu, B., Reyes, R., Rezaei, A. S., Ricci, F., Ricci, M., Ricciardone, A., Richardson, J. W., Richardson, M., Rijal, A., Riles, K., Riley, H. K., Rinaldi, S., Rittmeyer, J., Robertson, C., Robinet, F., Robinson, M., Rocchi, A., Rolland, L., Rollins, J. G., Romano, A. E., Romano, R., Romero, A., Romero-Shaw, I. M., Romie, J. H., Ronchini, S., Roocke, T. J., Rosa, L., Rosauer, T. J., Rose, C. A., Rosińska, D., Ross, M. P., Rossello, M., Rowan, S., Roy, S. K., Roy, S., Rozza, D., Ruggi, P., Ruhama, N., Morales, E. Ruiz, Ruiz-Rocha, K., Sachdev, S., Sadecki, T., Sadiq, J., Saffarieh, P., Sah, M. R., Saha, S. S., Saha, S., Sainrat, T., Menon, S. Sajith, Sakai, K., Sakellariadou, M., Sakon, S., Salafia, O. S., Salces-Carcoba, F., Salconi, L., Saleem, M., Salemi, F., Sallé, M., Salvador, S., Sanchez, A., Sanchez, E. J., Sanchez, J. H., Sanchez, L. E., Sanchis-Gual, N., Sanders, J. R., Sänger, E. M., Santoliquido, F., Saravanan, T. R., Sarin, N., Sasaoka, S., Sasli, A., Sassi, P., Sassolas, B., Satari, H., Sato, R., Sato, Y., Sauter, O., Savage, R. L., Sawada, T., Sawant, H. L., Sayah, S., Scacco, V., Schaetzl, D., Scheel, M., Schiebelbein, A., Schiworski, M. G., Schmidt, P., Schmidt, S., Schnabel, R., Schneewind, M., Schofield, R. M. S., Schouteden, K., Schulte, B. W., Schutz, B. F., Schwartz, E., Scialpi, M., Scott, J., Scott, S. M., Seetharamu, T. C., Seglar-Arroyo, M., Sekiguchi, Y., Sellers, D., Sengupta, A. S., Sentenac, D., Seo, E. G., Seo, J. W., Sequino, V., Serra, M., Servignat, G., Sevrin, A., Shaffer, T., Shah, U. S., Shaikh, M. A., Shao, L., Sharma, A. K., Sharma, P., Sharma-Chaudhary, S., Shaw, M. R., Shawhan, P., Shcheblanov, N. S., Sheridan, E., Shikano, Y., Shikauchi, M., Shimode, K., Shinkai, H., Shiota, J., Shoemaker, D. H., Shoemaker, D. M., Short, R. W., ShyamSundar, S., Sider, A., Siegel, H., Sieniawska, M., Sigg, D., Silenzi, L., Simmonds, M., Singer, L. P., Singh, A., Singh, D., Singh, M. K., Singh, S., Singha, A., Sintes, A. M., Sipala, V., Skliris, V., Slagmolen, B. J. J., Slaven-Blair, T. J., Smetana, J., Smith, J. R., Smith, L., Smith, R. J. E., Smith, W. J., Soldateschi, J., Somiya, K., Song, I., Soni, K., Soni, S., Sordini, V., Sorrentino, F., Sorrentino, N., Sotani, H., Soulard, R., Southgate, A., Spagnuolo, V., Spencer, A. P., Spera, M., Spinicelli, P., Spoon, J. B., Sprague, C. A., Srivastava, A. K., Stachurski, F., Steer, D. A., Steinlechner, J., Steinlechner, S., Stergioulas, N., Stevens, P., StPierre, M., Stratta, G., Strong, M. D., Strunk, A., Sturani, R., Stuver, A. L., Suchenek, M., Sudhagar, S., Sueltmann, N., Suleiman, L., Sullivan, K. D., Sun, L., Sunil, S., Suresh, J., Sutton, P. J., Suzuki, T., Suzuki, Y., Swinkels, B. L., Syx, A., Szczepańczyk, M. J., Szewczyk, P., Tacca, M., Tagoshi, H., Tait, S. C., Takahashi, H., Takahashi, R., Takamori, A., Takase, T., Takatani, K., Takeda, H., Takeshita, K., Talbot, C., Tamaki, M., Tamanini, N., Tanabe, D., Tanaka, K., Tanaka, S. J., Tanaka, T., Tang, D., Tanioka, S., Tanner, D. B., Tao, L., Tapia, R. D., Martín, E. N. Tapia San, Tarafder, R., Taranto, C., Taruya, A., Tasson, J. D., Teloi, M., Tenorio, R., Themann, H., Theodoropoulos, A., Thirugnanasambandam, M. P., Thomas, L. M., Thomas, M., Thomas, P., Thompson, J. E., Thondapu, S. R., Thorne, K. A., Thrane, E., Tissino, J., Tiwari, A., Tiwari, P., Tiwari, S., Tiwari, V., Todd, M. R., Toivonen, A. M., Toland, K., Tolley, A. E., Tomaru, T., Tomita, K., Tomura, T., Tong-Yu, C., Toriyama, A., Toropov, N., Torres-Forné, A., Torrie, C. I., Toscani, M., Melo, I. Tosta e, Tournefier, E., Trapananti, A., Travasso, F., Traylor, G., Trevor, M., Tringali, M. C., Tripathee, A., Troian, G., Troiano, L., Trovato, A., Trozzo, L., Trudeau, R. J., Tsang, T. T. L., Tso, R., Tsuchida, S., Tsukada, L., Tsutsui, T., Turbang, K., Turconi, M., Turski, C., Ubach, H., Uchiyama, T., Udall, R. P., Uehara, T., Uematsu, M., Ueno, K., Ueno, S., Undheim, V., Ushiba, T., Vacatello, M., Vahlbruch, H., Vaidya, N., Vajente, G., Vajpeyi, A., Valdes, G., Valencia, J., Valentini, M., Vallejo-Peña, S. A., Vallero, S., Valsan, V., van Bakel, N., van Beuzekom, M., van Dael, M., Brand, J. F. J. van den, Broeck, C. Van Den, Vander-Hyde, D. C., van der Sluys, M., Van de Walle, A., van Dongen, J., Vandra, K., van Haevermaet, H., van Heijningen, J. V., Van Hove, P., VanKeuren, M., Vanosky, J., van Putten, M. H. P. M., van Ranst, Z., van Remortel, N., Vardaro, M., Vargas, A. F., Varghese, J. J., Varma, V., Vasúth, M., Vecchio, A., Vedovato, G., Veitch, J., Veitch, P. J., Venikoudis, S., Venneberg, J., Verdier, P., Verkindt, D., Verma, B., Verma, P., Verma, Y., Vermeulen, S. M., Vetrano, F., Veutro, A., Vibhute, A. M., Viceré, A., Vidyant, S., Viets, A. D., Vijaykumar, A., Vilkha, A., Villa-Ortega, V., Vincent, E. T., Vinet, J. -Y., Viret, S., Virtuoso, A., Vitale, S., Vives, A., Vocca, H., Voigt, D., von Reis, E. R. G., von Wrangel, J. S. A., Vyatchanin, S. P., Wade, L. E., Wade, M., Wagner, K. J., Wajid, A., Walker, M., Wallace, G. S., Wallace, L., Wang, H., Wang, J. Z., Wang, W. H., Wang, Z., Waratkar, G., Warner, J., Was, M., Washimi, T., Washington, N. Y., Watarai, D., Wayt, K. E., Weaver, B. R., Weaver, B., Weaving, C. R., Webster, S. A., Weinert, M., Weinstein, A. J., Weiss, R., Wellmann, F., Wen, L., Weßels, P., Wette, K., Whelan, J. T., Whiting, B. F., Whittle, C., Wildberger, J. B., Wilk, O. S., Wilken, D., Wilkin, A. T., Willadsen, D. J., Willetts, K., Williams, D., Williams, M. J., Williams, N. S., Willis, J. L., Willke, B., Wils, M., Winterflood, J., Wipf, C. C., Woan, G., Woehler, J., Wofford, J. K., Wolfe, N. E., Wong, H. T., Wong, H. W. Y., Wong, I. C. F., Wright, J. L., Wright, M., Wu, C., Wu, D. S., Wu, H., Wuchner, E., Wysocki, D. M., Xu, V. A., Xu, Y., Yadav, N., Yamamoto, H., Yamamoto, K., Yamamoto, T. S., Yamamoto, T., Yamamura, S., Yamazaki, R., Yan, S., Yan, T., Yang, F. W., Yang, F., Yang, K. Z., Yang, Y., Yarbrough, Z., Yasui, H., Yeh, S. -W., Yelikar, A. B., Yin, X., Yokoyama, J., Yokozawa, T., Yoo, J., Yu, H., Yuan, S., Yuzurihara, H., Zadrożny, A., Zanolin, M., Zeeshan, M., Zelenova, T., Zendri, J. -P., Zeoli, M., Zerrad, M., Zevin, M., Zhang, A. C., Zhang, L., Zhang, R., Zhang, T., Zhang, Y., Zhao, C., Zhao, Yue, Zhao, Yuhang, Zheng, Y., Zhong, H., Zhou, R., Zhu, X. -J., Zhu, Z. -H., Zucker, M. E., and Zweizig, J.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
The magnetar SGR 1935+2154 is the only known Galactic source of fast radio bursts (FRBs). FRBs from SGR 1935+2154 were first detected by CHIME/FRB and STARE2 in 2020 April, after the conclusion of the LIGO, Virgo, and KAGRA Collaborations' O3 observing run. Here we analyze four periods of gravitational wave (GW) data from the GEO600 detector coincident with four periods of FRB activity detected by CHIME/FRB, as well as X-ray glitches and X-ray bursts detected by NICER and NuSTAR close to the time of one of the FRBs. We do not detect any significant GW emission from any of the events. Instead, using a short-duration GW search (for bursts $\leq$ 1 s) we derive 50\% (90\%) upper limits of $10^{48}$ ($10^{49}$) erg for GWs at 300 Hz and $10^{49}$ ($10^{50}$) erg at 2 kHz, and constrain the GW-to-radio energy ratio to $\leq 10^{14} - 10^{16}$. We also derive upper limits from a long-duration search for bursts with durations between 1 and 10 s. These represent the strictest upper limits on concurrent GW emission from FRBs., Comment: 15 pages of text including references, 4 figures, 5 tables
- Published
- 2024
29. Exploring the interaction between the MW and LMC with a large sample of blue horizontal branch stars from the DESI survey
- Author
-
Byström, Amanda, Koposov, Sergey E., Lilleengen, Sophia, Li, Ting S., Bell, Eric, Silva, Leandro Beraldo e, Carrillo, Andreia, Chandra, Vedant, Gnedin, Oleg Y., Han, Jiwon Jesse, Medina, Gustavo E., Najita, Joan, Riley, Alexander H., Thomas, Guillaume, Valluri, Monica, Aguilar, Jessica N., Ahlen, Steven, Prieto, Carlos Allende, Brooks, David, Claybaugh, Todd, Cole, Shaun, Dawson, Kyle, de la Macorra, Axel, Font-Ribera, Andreu, Forero-Romero, Jaime E., Gaztañaga, Enrique, Gontcho, Satya Gontcho A, Kremin, Anthony, Lambert, Andrew, Landriau, Martin, Guillou, Laurent Le, Levi, Michael E., Meisner, Aaron, Miquel, Ramon, Moustakas, John, Prada, Francisco, Pérez-Ràfols, Ignasi, Rossi, Graziano, Sanchez, Eusebio, Schlegel, David, Schubnell, Michael, Sprayberry, David, Tarlé, Gregory, Weaver, Benjamin A., and Zou, Hu
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
The Large Magellanic Cloud (LMC) is a Milky Way (MW) satellite that is massive enough to gravitationally attract the MW disc and inner halo, causing significant motion of the inner MW with respect to the outer halo. In this work, we probe this interaction by constructing a sample of 9,866 blue horizontal branch (BHB) stars with radial velocities from the DESI spectroscopic survey out to 120 kpc from the Galactic centre. This is the largest spectroscopic set of BHB stars in the literature to date, and it contains four times more stars with Galactocentric distances beyond 50 kpc than previous BHB catalogues. Using the DESI BHB sample combined with SDSS BHBs, we measure the bulk radial velocity of stars in the outer halo and observe that the velocity in the Southern Galactic hemisphere is different by 3.7$\sigma$ from the North. Modelling the projected velocity field shows that its dipole component is directed at a point 22 degrees away from the LMC along its orbit, which we interpret as the travel direction of the inner MW. The velocity field includes a monopole term that is -24 km/s, which we refer to as compression velocity. This velocity is significantly larger than predicted by the current models of the MW and LMC interaction. This work uses DESI data from its first two years of observations, but we expect that with upcoming DESI data releases, the sample of BHB stars will increase and our ability to measure the MW-LMC interaction will improve significantly., Comment: 22 pages, 19 figures. Submitted to MNRAS
- Published
- 2024
30. The language of sound search: Examining User Queries in Audio Search Engines
- Author
-
Weck, Benno and Font, Frederic
- Subjects
Computer Science - Computation and Language ,Computer Science - Human-Computer Interaction ,Computer Science - Information Retrieval ,Computer Science - Machine Learning ,Computer Science - Sound ,Electrical Engineering and Systems Science - Audio and Speech Processing - Abstract
This study examines textual, user-written search queries within the context of sound search engines, encompassing various applications such as foley, sound effects, and general audio retrieval. Current research inadequately addresses real-world user needs and behaviours in designing text-based audio retrieval systems. To bridge this gap, we analysed search queries from two sources: a custom survey and Freesound website query logs. The survey was designed to collect queries for an unrestricted, hypothetical sound search engine, resulting in a dataset that captures user intentions without the constraints of existing systems. This dataset is also made available for sharing with the research community. In contrast, the Freesound query logs encompass approximately 9 million search requests, providing a comprehensive view of real-world usage patterns. Our findings indicate that survey queries are generally longer than Freesound queries, suggesting users prefer detailed queries when not limited by system constraints. Both datasets predominantly feature keyword-based queries, with few survey participants using full sentences. Key factors influencing survey queries include the primary sound source, intended usage, perceived location, and the number of sound sources. These insights are crucial for developing user-centred, effective text-based audio retrieval systems, enhancing our understanding of user behaviour in sound search contexts., Comment: Accepted at DCASE 2024. Supplementary materials at https://doi.org/10.5281/zenodo.13622537
- Published
- 2024
31. High-redshift LBG selection from broadband and wide photometric surveys using a Random Forest algorithm
- Author
-
Payerne, C., Doumerg, W. d'Assignies, Yèche, C., Ruhlmann-Kleider, V., Raichoor, A., Lang, D., Aguilar, J. N., Ahlen, S., Bianchi, D., Brooks, D., Claybaugh, T., Cole, S., de la Macorra, A., Dey, B., Doel, P., Font-Ribera, A., Forero-Romero, J. E., Gontcho, S. Gontcho A, Gutierrez, G., Honscheid, K., Juneau, S., Lambert, A., Landriau, M., Guillou, L. Le, Levi, M. E., Magneville, C., Manera, M., Meisner, A., Miquel, R., Moustakas, J., Newman, J. A., Palanque-Delabrouille, N., Percival, W., Prada, F., Pérez-Ràfols, I., Rossi, G., Sanchez, E., Schlegel, D., Schubnell, M., Sprayberry, D., Tarlé, G., Weaver, B. A., and Zou, H.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
In this paper, we investigate the possibility of selecting high-redshift Lyman-Break Galaxies (LBG) using current and future broadband wide photometric surveys, such as UNIONS or the Vera C. Rubin LSST, using a Random Forest algorithm. This work is conducted in the context of future large-scale structure spectroscopic surveys like DESI-II, the next phase of the Dark Energy Spectroscopic Instrument (DESI), which will start around 2029. We use deep imaging data from HSC and CLAUDS on the COSMOS and XMM-LSS fields. To predict the selection performance of LBGs with image quality similar to UNIONS, we degrade the $u, g, r, i$ and $z$ bands to UNIONS depth. The Random Forest algorithm is trained with the $u,g,r,i$ and $z$ bands to classify LBGs in the $2.5 < z < 3.5$ range. We find that fixing a target density budget of $1,100$ deg$^{-2}$, the Random Forest approach gives a density of $z>2$ targets of $873$ deg$^{-2}$, and a density of $493$ deg$^{-2}$ of confirmed LBGs after spectroscopic confirmation with DESI. This UNIONS-like selection was tested in a dedicated spectroscopic observation campaign of 1,000 targets with DESI on the COSMOS field, providing a safe spectroscopic sample with a mean redshift of 3. This sample is used to derive forecasts for DESI-II, assuming a sky coverage of 5,000 deg$^2$. We predict uncertainties on Alcock-Paczynski parameters $\alpha_\perp$ and $\alpha_{\parallel}$ to be 0.7$\%$ and 1$\%$ for $2.6
- Published
- 2024
32. Heterogeneous sound classification with the Broad Sound Taxonomy and Dataset
- Author
-
Anastasopoulou, Panagiota, Torrey, Jessica, Serra, Xavier, and Font, Frederic
- Subjects
Computer Science - Sound ,Computer Science - Artificial Intelligence ,Electrical Engineering and Systems Science - Audio and Speech Processing - Abstract
Automatic sound classification has a wide range of applications in machine listening, enabling context-aware sound processing and understanding. This paper explores methodologies for automatically classifying heterogeneous sounds characterized by high intra-class variability. Our study evaluates the classification task using the Broad Sound Taxonomy, a two-level taxonomy comprising 28 classes designed to cover a heterogeneous range of sounds with semantic distinctions tailored for practical user applications. We construct a dataset through manual annotation to ensure accuracy, diverse representation within each class and relevance in real-world scenarios. We compare a variety of both traditional and modern machine learning approaches to establish a baseline for the task of heterogeneous sound classification. We investigate the role of input features, specifically examining how acoustically derived sound representations compare to embeddings extracted with pre-trained deep neural networks that capture both acoustic and semantic information about sounds. Experimental results illustrate that audio embeddings encoding acoustic and semantic information achieve higher accuracy in the classification task. After careful analysis of classification errors, we identify some underlying reasons for failure and propose actions to mitigate them. The paper highlights the need for deeper exploration of all stages of classification, understanding the data and adopting methodologies capable of effectively handling data complexity and generalizing in real-world sound environments., Comment: DCASE2024, post-print, 5 pages, 2 figures
- Published
- 2024
33. Future Teachers' Reflections on Mathematical Errors Made in Their Teaching Practice
- Author
-
Vicenç Font, Adriana Breda, Gemma Sala-Sebastià, and Luís R. Pino-Fan
- Abstract
This study answers the following research questions: 1) What types of mathematical errors do future teachers identify when they reflect on their practice? and 2) Which levels of development of the didactic suitability assessment competence for the "errors" component can be inferred when they reflect on their practice? To answer these questions, we explain the Didactic Suitability Criteria construct and describe the associated training cycle structure in the theoretical and methodological framework sections. We followed a qualitative research methodology that mainly consists of thematic analysis. The study conducted allows finding inductive categories of types of mathematical errors, such as error in the task instructions, error of proposition, procedural error, error in the representation, error in the definition and error in the argument. It also enables establishing levels of development of the didactic suitability assessment competence of future teachers for the "errors" component. The main conclusion of this research is the importance of the context to decide what a mathematical error is. The need to further examine the notion of mathematical error in the training of future mathematics teachers is also stressed. Another conclusion is the development of a rubric that allows for more accurate and deeper reflections of future teachers on the errors made.
- Published
- 2024
- Full Text
- View/download PDF
34. Analysis of DESI×DES using the Lagrangian effective theory of LSS
- Author
-
Chen, S, DeRose, J, Zhou, R, White, M, Ferraro, S, Blake, C, Lange, JU, Wechsler, RH, Aguilar, J, Ahlen, S, Brooks, D, Claybaugh, T, Dawson, K, de la Macorra, A, Doel, P, Font-Ribera, A, Gaztañaga, E, Gontcho, S Gontcho A, Gutierrez, G, Honscheid, K, Howlett, C, Kehoe, R, Kirkby, D, Kisner, T, Kremin, A, Landriau, M, Le Guillou, L, Manera, M, Meisner, A, Miquel, R, Newman, JA, Niz, G, Palanque-Delabrouille, N, Percival, WJ, Prada, F, Rossi, G, Sanchez, E, Schlegel, D, Schubnell, M, Sprayberry, D, Tarlé, G, and Weaver, BA
- Subjects
Nuclear and Plasma Physics ,Physical Sciences - Abstract
In this work we use Lagrangian perturbation theory to analyze the harmonic space galaxy clustering signal of the Bright Galaxy Survey (BGS) and luminous red galaxies (LRGs) targeted by the dark energy spectroscopic instrument (DESI), combined with the galaxy-galaxy lensing signal measured around these galaxies using Dark Energy Survey Year 3 source galaxies. The BGS and LRG galaxies are extremely well characterized by DESI spectroscopy and, as a result, lens galaxy redshift uncertainty and photometric systematics contribute negligibly to the error budget of our "2×2-point"analysis. On the modeling side, this work represents the first application of the spinosaurus code, implementing an effective field theory model for galaxy intrinsic alignments, and we additionally introduce a new scheme (maiar) for marginalizing over the large uncertainties in the redshift evolution of the intrinsic alignment signal. Furthermore, this is the first application of a hybrid effective field theory model for galaxy bias based on the aemulus ν simulations. Our main result is a measurement of the amplitude of the lensing signal, S8=σ8(ωm/0.3)0.5=0.850-0.050+0.042, consistent with values of this parameter derived from the primary cosmic microwave background. This constraint is artificially improved by a factor of 51% if we assume a more standard, but restrictive parametrization for the redshift evolution and sample dependence of the intrinsic alignment signal, and 63% if we additionally assume the nonlinear alignment model. We show that when fixing the cosmological model to the best-fit values from Planck PR4 there is >5σ evidence for a deviation of the evolution of the intrinsic alignment signal from the functional form that is usually assumed in cosmic shear and galaxy-galaxy lensing studies.
- Published
- 2024
35. The atomic gas sequence and mass–metallicity relation from dwarfs to massive galaxies
- Author
-
Scholte, Dirk, Saintonge, Amélie, Moustakas, John, Catinella, Barbara, Zou, Hu, Dey, Biprateep, Aguilar, J, Ahlen, S, Anand, A, Blum, R, Brooks, D, Circosta, C, Claybaugh, T, de la Macorra, A, Doel, P, Font-Ribera, A, Förster, PU, Forero-Romero, JE, Gaztañaga, E, Gontcho, S Gontcho A, Juneau, S, Kehoe, R, Kisner, T, Koposov, SE, Kremin, A, Lambert, A, Landriau, M, Maraston, C, Martini, P, Meisner, A, Mighty, AS, Miquel, R, Myers, AD, Nie, J, Poppett, C, Prada, F, Rezaie, M, Rossi, G, Sanchez, E, Schubnell, M, Silber, J, Sprayberry, D, Siudek, M, Speranza, F, Tarlé, G, Tojeiro, R, and Weaver, BA
- Subjects
Astronomical Sciences ,Physical Sciences ,galaxies: dwarf ,galaxies: general ,galaxies: ISM ,Astronomical and Space Sciences ,Astronomy & Astrophysics ,Astronomical sciences ,Particle and high energy physics ,Space sciences - Abstract
Galaxy scaling relations provide insights into the processes that drive galaxy evolution. The extension of these scaling relations into the dwarf galaxy regime is of particular interest. This is because dwarf galaxies represent a crucial stage in galaxy evolution, and understanding them could also shed light on their role in reionizing the early Universe. There is currently no consensus on the processes that dominate the evolution of dwarfs. In this work, we constrain the atomic gas sequence (stellar mass versus atomic gas fraction) and mass–metallicity relation (stellar mass versus gas-phase metallicity) from dwarf (106.5 M) to massive (1011.5 M) galaxies in the local Universe. The combined optical and 21-cm spectroscopic observations of the Dark Energy Spectroscopic Instrument and Arecibo Legacy Fast ALFA surveys allow us to constrain both scaling relations simultaneously. We find a slope change of the atomic gas sequence at a stellar mass of ∼109 M. We also find that the shape and scatter of the atomic gas sequence and mass–metallicity relation are strongly linked for both dwarfs and more massive galaxies. Consequently, the low-mass slope change of the atomic gas sequence is imprinted onto the mass–metallicity relation of dwarf galaxies. The mass scale of the measured slope change is consistent with a predicted escape velocity threshold below which low-mass galaxies experience significant supernova-driven gas loss, as well as with a reduction in cold gas accretion onto more massive galaxies.
- Published
- 2024
36. Value Added Catalog of physical properties of more than 1.3 million galaxies from the DESI Survey
- Author
-
Siudek, M., Pucha, R., Mezcua, M., Juneau, S., Aguilar, J., Ahlen, S., Brooks, D., Circosta, C., Claybaugh, T., Cole, S., Dawson, K., de la Macorra, A., Dey, Arjun, Dey, Biprateep, Doel, P., Font-Ribera, A., Forero-Romero, J. E., Gaztañaga, E., Gontcho, S. Gontcho A, Gutierrez, G., Honscheid, K., Howlett, C., Ishak, M., Kehoe, R., Kirkby, D., Kisner, T., Kremin, A., Lambert, A., Landriau, M., Guillou, L. Le, Manera, M., Martini, P., Meisner, A., Miquel, R., Moustakas, J., Newman, J. A., Niz, G., Pan, Z., Percival, W. J., Poppett, C., Prada, F., Rossi, G., Saintonge, A., Sanchez, E., Schlegel, D., Scholte, D., Schubnell, M., Seo, H., Speranza, F., Sprayberry, D., Tarle, G., Weaver, B. A., and Zou, H.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
Aims. We present an extensive catalog of the physical properties of more than a million galaxies within the Dark Energy Spectroscopic Instrument (DESI), one of the largest spectroscopic surveys to date. Spanning over a full variety of target types, including emission line galaxies and luminous red galaxies as well as quasars, our survey encompasses an unprecedented range of spectroscopic redshifts, stretching from 0 to 6. Methods. The physical properties, such as stellar masses and star formation rates, are derived via the CIGALE spectral energy distribution (SED) fitting code accounting for the contribution coming from active galactic nuclei (AGN). Based on the modeling of the optical-mid-infrared (grz complemented by WISE photometry) SEDs, we study galaxy properties with respect to their location on the main sequence. Results. We revise the dependence of stellar mass estimates on model choices and availability of the WISE photometry. The WISE information is mandatory to minimize the misclassification of star-forming galaxies as AGN. The lack of WISE bands in SED fits leads to elevated AGN fractions for 68% of star-forming galaxies identified using emission line diagnostic diagram but does not significantly affect their stellar mass nor star formation estimates., Comment: resubmitted after addressing minor referee comments
- Published
- 2024
- Full Text
- View/download PDF
37. Standardised formats and open-source analysis tools for the MAGIC telescopes data
- Author
-
Abe, S., Abhir, J., Abhishek, A., Acciari, V. A., Aguasca-Cabot, A., Agudo, I., Aniello, T., Ansoldi, S., Antonelli, L. A., Engels, A. Arbet, Arcaro, C., Artero, M., Asano, K., Babić, A., de Almeida, U. Barres, Barrio, J. A., Batković, I., Bautista, A., Baxter, J., González, J. Becerra, Bednarek, W., Bernardini, E., Bernete, J., Berti, A., Besenrieder, J., Bigongiari, C., Biland, A., Blanch, O., Bonnoli, G., Bošnjak, Ž., Bronzini, E., Burelli, I., Busetto, G., Campoy-Ordaz, A., Carosi, A., Carosi, R., Carretero-Castrillo, M., Castro-Tirado, A. J., Cerasole, D., Ceribella, G., Chai, Y., Cifuentes, A., Colombo, E., Contreras, J. L., Cortina, J., Covino, S., D'Amico, G., D'Elia, V., Da Vela, P., Dazzi, F., De Angelis, A., De Lotto, B., de Menezes, R., Delfino, M., Delgado, J., Di Pierro, F., Di Tria, R., Di Venere, L., Prester, D. Dominis, Donini, A., Dorner, D., Doro, M., Elsaesser, D., Escudero, J., Fariña, L., Fattorini, A., Foffano, L., Font, L., Fröse, S., Fukami, S., Fukazawa, Y., López, R. J. García, Garczarczyk, M., Gasparyan, S., Gaug, M., Paiva, J. G. Giesbrecht, Giglietto, N., Giordano, F., Gliwny, P., Gradetzke, T., Grau, R., Green, D., Green, J. G., Günther, P., Hadasch, D., Hahn, A., Hassan, T., Heckmann, L., Llorente, J. Herrera, Hrupec, D., Hütten, M., Imazawa, R., Ishio, K., Martínez, I. Jiménez, Jormanainen, J., Kayanoki, T., Kerszberg, D., Kluge, G. W., Kobayashi, Y., Kouch, P. M., Kubo, H., Kushida, J., Láinez, M., Lamastra, A., Leone, F., Lindfors, E., Lombardi, S., Longo, F., López-Coto, R., López-Moya, M., López-Oramas, A., Loporchio, S., Lorini, A., Lyard, E., Fraga, B. Machado de Oliveira, Majumdar, P., Makariev, M., Maneva, G., Manganaro, M., Mangano, S., Mannheim, K., Mariotti, M., Martínez, M., Martínez-Chicharro, M., Mas-Aguilar, A., Mazin, D., Menchiari, S., Mender, S., Miceli, D., Miener, T., Miranda, J. M., Mirzoyan, R., González, M. Molero, Molina, E., Mondal, H. A., Moralejo, A., Morcuende, D., Nakamori, T., Nanci, C., Neustroev, V., Nickel, L., Rosillo, M. Nievas, Nigro, C., Nikolić, L., Nishijima, K., Ekoume, T. Njoh, Noda, K., Nozaki, S., Ohtani, Y., Okumura, A., Otero-Santos, J., Paiano, S., Paneque, D., Paoletti, R., Paredes, J. M., Peresano, M., Persic, M., Pihet, M., Pirola, G., Podobnik, F., Moroni, P. G. Prada, Prandini, E., Principe, G., Priyadarshi, C., Rhode, W., Ribó, M., Rico, J., Righi, C., Sahakyan, N., Saito, T., Saturni, F. G., Schmidt, K., Schmuckermaier, F., Schubert, J. L., Schweizer, T., Sciaccaluga, A., Silvestri, G., Sitarek, J., Sliusar, V., Sobczynska, D., Spolon, A., Stamerra, A., Strišković, J., Strom, D., Strzys, M., Suda, Y., Suutarinen, S., Tajima, H., Takahashi, M., Takeishi, R., Temnikov, P., Terauchi, K., Terzić, T., Teshima, M., Truzzi, S., Tutone, A., Ubach, S., van Scherpenberg, J., Acosta, M. Vazquez, Ventura, S., Viale, I., Vigorito, C. F., Vitale, V., Vovk, I., Walter, R., Will, M., Wunderlich, C., Yamamoto, T., Jouvin, L., Linhoff, L., and Linhoff, M.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
Instruments for gamma-ray astronomy at Very High Energies ($E>100\,{\rm GeV}$) have traditionally derived their scientific results through proprietary data and software. Data standardisation has become a prominent issue in this field both as a requirement for the dissemination of data from the next generation of gamma-ray observatories and as an effective solution to realise public data legacies of current-generation instruments. Specifications for a standardised gamma-ray data format have been proposed as a community effort and have already been successfully adopted by several instruments. We present the first production of standardised data from the Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) telescopes. We converted $166\,{\rm h}$ of observations from different sources and validated their analysis with the open-source software Gammapy. We consider six data sets representing different scientific and technical analysis cases and compare the results obtained analysing the standardised data with open-source software against those produced with the MAGIC proprietary data and software. Aiming at a systematic production of MAGIC data in this standardised format, we also present the implementation of a database-driven pipeline automatically performing the MAGIC data reduction from the calibrated down to the standardised data level. In all the cases selected for the validation, we obtain results compatible with the MAGIC proprietary software, both for the manual and for the automatic data productions. Part of the validation data set is also made publicly available, thus representing the first large public release of MAGIC data. This effort and this first data release represent a technical milestone toward the realisation of a public MAGIC data legacy., Comment: Accepted for publication in the Journal of High Energy Astrophysics
- Published
- 2024
38. Detailed Analysis of Local Climate at the CTAO-North Site on La Palma from 20 Years of MAGIC Weather Station Data
- Author
-
Gaug, Markus, Longo, Alessandro, Bianchi, Stefano, Font, Lluís, Almirante, Sofia, Kornmayer, Harald, Doro, Michele, Hahn, Alexander, Blanch, Oscar, Plastino, Wolfango, and Dorner, Daniela
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
The Observatorio del Roque de los Muchachos will host the northern site of the Cherenkov Telescope Array Observatory (CTAO), in an area about 200 m below the mountain rim, where the optical telescopes are located. The site currently hosts the MAGIC Telescopes, which have gathered a unique series of 20 years of weather data. We use advanced profile likelihood methods to determine seasonal cycles, the occurrence of weather extremes, weather downtime, and long-term trends correctly taking into account data gaps. The fractality of the weather data is investigated by means of multifractal detrended fluctuation analysis. The data are published according to the Findable, Accessible, Interoperable, and Reusable (FAIR) principles. We find that the behaviour of wind and relative humidity show significant differences compared to the mountain rim. We observe an increase in temperature of $0.55\pm0.07\mathrm{(stat.)}\pm0.07\mathrm{(syst.)}^\circ C$/decade, the diurnal temperature range of $0.13\pm0.04\mathrm{(stat.)}\pm0.02\mathrm{(syst.)}^\circ C$/decade (accompanied by an increase of seasonal oscillation amplitude of $\Delta C_m=0.29\pm0.10\mathrm{(stat.)}\pm0.04\mathrm{(syst.)}^\circ C$/decade) and relative humidity of $4.0\pm0.4\mathrm{(stat.)}\pm1.1\mathrm{(syst.)}$%/decade, and a decrease in trade wind speeds of $0.85\pm0.12\mathrm{(stat.)}\pm0.07\mathrm{(syst.)}$(km/h)/decade. The occurrence of extreme weather, such as tropical storms and long rains, remains constant over time. We find a significant correlation of temperature with the North Atlantic Oscillation Index and multifractal behaviour of the data. The site shows a weather-related downtime of 18.5%-20.5%, depending on the wind gust limits employed. No hints are found of a degradation of weather downtime under the assumption of a linear evolution of environmental parameters over time., Comment: accepted for publication in MNRAS. For associated data, see https://dx.doi.org/10.5281/zenodo.11279074 , for associated analysis code, see https://github.com/mgaug/WS-Analysis
- Published
- 2024
- Full Text
- View/download PDF
39. Security, Trust and Privacy challenges in AI-driven 6G Networks
- Author
-
Rifa-Pous, Helena, Garcia-Font, Victor, Nunez-Gomez, Carlos, and Salas, Julian
- Subjects
Computer Science - Cryptography and Security ,Computer Science - Networking and Internet Architecture - Abstract
The advent of 6G networks promises unprecedented advancements in wireless communication, offering wider bandwidth and lower latency compared to its predecessors. This article explores the evolving infrastructure of 6G networks, emphasizing the transition towards a more disaggregated structure and the integration of artificial intelligence (AI) technologies. Furthermore, it explores the security, trust and privacy challenges and attacks in 6G networks, particularly those related to the use of AI. It presents a classification of network attacks stemming from its AI-centric architecture and explores technologies designed to detect or mitigate these emerging threats. The paper concludes by examining the implications and risks linked to the utilization of AI in ensuring a robust network., Comment: 19 pages, 6 tables
- Published
- 2024
- Full Text
- View/download PDF
40. Gemini High-resolution Optical SpecTrograph (GHOST) at Gemini-South: Instrument performance and integration, first science, and next steps
- Author
-
Kalari, V. M., Diaz, R. J., Robertson, G., McConnachie, A., Ireland, M., Salinas, R., Young, P., Simpson, C., Hayes, C., Nielsen, J., Burley, G., Pazder, J., Gomez-Jimenez, M., Martioli, E., Howell, S. B., Jeong, M., Juneau, S., Ruiz-Carmona, R., Margheim, S., Sheinis, A., Anthony, A., Baker, G., Berg, T. A. M., Cao, T., Chapin, E., Chin, T., Chiboucas, K., Churilov, V., Deibert, E., Densmore, A., Dunn, J., Edgar, M. L., Heo, J., Henderson, D., Farrell, T., Font, J., Firpo, V., Fuentes, J., Labrie, K., Lambert, S., Lawrence, J., Lothrop, J., McDermid, R., Miller, B. W., Perez, G., Placco, V. M., Prado, P., Quiroz, C., Ramos, F., Rutten, R., Silva, K. M. G., Thomas-Osip, J., Urrutia, C., Vacca, W. D., Venn, K., Waller, F., Waller, L., White, M., Xu, S., and Zhelem, R.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Solar and Stellar Astrophysics - Abstract
The Gemini South telescope is now equipped with a new high-resolution spectrograph called GHOST (the Gemini High-resolution Optical SpecTrograph). This instrument provides high-efficiency, high-resolution spectra covering 347-1060 nm in a single exposure of either one or two targets simultaneously, along with precision radial velocity spectroscopy utilizing an internal calibration source. It can operate at a spectral element resolving power of either 76000 or 56000, and can reach a SNR$\sim$5 in a 1hr exposure on a V$\sim$20.8 mag target in median site seeing, and dark skies (per resolution element). GHOST was installed on-site in June 2022, and we report performance after full integration to queue operations in November 2023, in addition to scientific results enabled by the integration observing runs. These results demonstrate the ability to observe a wide variety of bright and faint targets with high efficiency and precision. With GHOST, new avenues to explore high-resolution spectroscopy have opened up to the astronomical community. These are described, along with the planned and potential upgrades to the instrument., Comment: Accepted in the Astronomical Journal; 26 pages, 24 figures and 4 tables
- Published
- 2024
41. ForestFlow: cosmological emulation of Lyman-$\alpha$ forest clustering from linear to nonlinear scales
- Author
-
Chaves-Montero, J., Cabayol-Garcia, L., Lokken, M., Font-Ribera, A., Aguilar, J., Ahlen, S., Bianchi, D., Brooks, D., Claybaugh, T., Cole, S., de la Macorra, A., Ferraro, S., Forero-Romero, J. E., Gaztañaga, E., Gontcho, S. Gontcho A, Gutierrez, G., Honscheid, K., Kehoe, R., Kirkby, D., Kremin, A., Lambert, A., Landriau, M., Manera, M., Martini, P., Miquel, R., Muñoz-Gutiérrez, A., Niz, G., Pérez-Ràfols, I., Rossi, G., Sanchez, E., Schubnell, M., Sprayberry, D., Tarlé, G., and Weaver, B. A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
On large scales, measurements of the Lyman-$\alpha$ forest offer insights into the expansion history of the Universe, while on small scales, these impose strict constraints on the growth history, the nature of dark matter, and the sum of neutrino masses. This work introduces ForestFlow, a cosmological emulator designed to bridge the gap between large- and small-scale Lyman-$\alpha$ forest analyses. Using conditional normalizing flows, ForestFlow emulates the 2 Lyman-$\alpha$ linear biases ($b_\delta$ and $b_\eta$) and 6 parameters describing small-scale deviations of the 3D flux power spectrum ($P_\mathrm{3D}$) from linear theory. These 8 parameters are modeled as a function of cosmology $\unicode{x2013}$ the small-scale amplitude and slope of the linear power spectrum $\unicode{x2013}$ and the physics of the intergalactic medium. Thus, in combination with a Boltzmann solver, ForestFlow can predict $P_\mathrm{3D}$ on arbitrarily large (linear) scales and the 1D flux power spectrum ($P_\mathrm{1D}$) $\unicode{x2013}$ the primary observable for small-scale analyses $\unicode{x2013}$ without the need for interpolation or extrapolation. Consequently, ForestFlow enables for the first time multiscale analyses. Trained on a suite of 30 fixed-and-paired cosmological hydrodynamical simulations spanning redshifts from $z=2$ to $4.5$, ForestFlow achieves $3$ and $1.5\%$ precision in describing $P_\mathrm{3D}$ and $P_\mathrm{1D}$ from linear scales to $k=5\,\mathrm{Mpc}^{-1}$ and $k_\parallel=4\,\mathrm{Mpc}^{-1}$, respectively. Thanks to its parameterization, the precision of the emulator is also similar for both ionization histories and two extensions to the $\Lambda$CDM model $\unicode{x2013}$ massive neutrinos and curvature $\unicode{x2013}$ not included in the training set. ForestFlow will be crucial for the cosmological analysis of Lyman-$\alpha$ forest measurements from the DESI survey., Comment: 17 pages, 11 figures. Submitted to A&A
- Published
- 2024
42. Stellar reddening map from DESI imaging and spectroscopy
- Author
-
Zhou, Rongpu, Guy, Julien, Koposov, Sergey E., Schlafly, Edward F., Schlegel, David, Aguilar, Jessica, Ahlen, Steven, Bailey, Stephen, Bianchi, David, Brooks, David, Chaussidon, Edmond, Claybaugh, Todd, Dawson, Kyle, de la Macorra, Axel, Dey, Biprateep, Eisenstein, Daniel J., Ferraro, Simone, Font-Ribera, Andreu, Forero-Romero, Jaime E., Gaztañaga, Enrique, Gontcho, Satya Gontcho A, Gutierrez, Gaston, Honscheid, Klaus, Juneau, Stephanie, Kehoe, Robert, Kirkby, David, Kisner, Theodore, Kremin, Anthony, Lambert, Andrew, Landriau, Martin, Guillou, Laurent Le, Levi, Michael E., Li, Ting S., Manera, Marc, Martini, Paul, Meisner, Aaron, Miquel, Ramon, Moustakas, John, Myers, Adam D., Newman, Jeffrey A., Niz, Gustavo, Palanque-Delabrouille, Nathalie, Percival, Will J., Poppett, Claire, Prada, Francisco, Raichoor, Anand, Ross, Ashley J., Rossi, Graziano, Sanchez, Eusebio, Saydjari, Andrew K., Schubnell, Michael, Sprayberry, David, Tarl, Gregory, Weaver, Benjamin A., Zarrouk, Pauline, and Zou, Hu
- Subjects
Astrophysics - Astrophysics of Galaxies ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present new Galactic reddening maps of the high Galactic latitude sky using DESI imaging and spectroscopy. We directly measure the reddening of 2.6 million stars by comparing the observed stellar colors in $g-r$ and $r-z$ from DESI imaging with the synthetic colors derived from DESI spectra from the first two years of the survey. The reddening in the two colors is on average consistent with the \cite{fitzpatrick_correcting_1999} extinction curve with $R_\mathrm{V}=3.1$. We find that our reddening maps differ significantly from the commonly used \cite{schlegel_maps_1998} (SFD) reddening map (by up to 80 mmag in $E(B-V)$), and we attribute most of this difference to systematic errors in the SFD map. To validate the reddening map, we select a galaxy sample with extinction correction based on our reddening map, and this yields significantly better uniformity than the SFD extinction correction. Finally, we discuss the potential systematic errors in the DESI reddening measurements, including the photometric calibration errors that are the limiting factor on our accuracy. The $E(g-r)$ and $E(g-r)$ maps presented in this work, and for convenience their corresponding $E(B-V)$ maps with SFD calibration, are publicly available., Comment: Submitted to the Open Journal of Astrophysics. Associated data files: https://data.desi.lbl.gov/public/papers/mws/desi_dust/y2/v1/maps/
- Published
- 2024
43. Evaluating Neural Networks Architectures for Spring Reverb Modelling
- Author
-
Papaleo, Francesco, Lizarraga-Seijas, Xavier, and Font, Frederic
- Subjects
Computer Science - Sound ,Computer Science - Artificial Intelligence - Abstract
Reverberation is a key element in spatial audio perception, historically achieved with the use of analogue devices, such as plate and spring reverb, and in the last decades with digital signal processing techniques that have allowed different approaches for Virtual Analogue Modelling (VAM). The electromechanical functioning of the spring reverb makes it a nonlinear system that is difficult to fully emulate in the digital domain with white-box modelling techniques. In this study, we compare five different neural network architectures, including convolutional and recurrent models, to assess their effectiveness in replicating the characteristics of this audio effect. The evaluation is conducted on two datasets at sampling rates of 16 kHz and 48 kHz. This paper specifically focuses on neural audio architectures that offer parametric control, aiming to advance the boundaries of current black-box modelling techniques in the domain of spring reverberation., Comment: 8 pages, 7 figures, 2 tables
- Published
- 2024
44. A functional variational approach to pricing path dependent insurance policies
- Author
-
Baños, David R., Ortiz-Latorre, Salvador, and Font, Oriol Zamora
- Subjects
Quantitative Finance - Pricing of Securities ,60H30, 91G20, 91G30, 91G60, 35Q91 - Abstract
The main purpose of this work is the derivation of a functional partial differential equation (FPDE) for the calculations of equity-linked insurance policies, where the payment stream may depend on the whole past history of the financial asset. To this end, we employ variational techniques from the theory of functional It\^o calculus.
- Published
- 2024
45. DESI Peculiar Velocity Survey -- Fundamental Plane
- Author
-
Said, Khaled, Howlett, Cullan, Davis, Tamara, Lucey, John, Saulder, Christoph, Douglass, Kelly, Kim, Alex G., Kremin, Anthony, Ross, Caitlin, Aldering, Greg, Aguilar, Jessica Nicole, Ahlen, Steven, BenZvi, Segev, Bianchi, Davide, Brooks, David, Claybaugh, Todd, Dawson, Kyle, de la Macorra, Axel, Dey, Biprateep, Doel, Peter, Fanning, Kevin, Ferraro, Simone, Font-Ribera, Andreu, Forero-Romero, Jaime E., Gaztañaga, Enrique, Gontcho, Satya Gontcho A, Guy, Julien, Honscheid, Klaus, Kehoe, Robert, Kisner, Theodore, Lambert, Andrew, Landriau, Martin, Guillou, Laurent Le, Manera, Marc, Meisner, Aaron, Miquel, Ramon, Moustakas, John, Muñoz-Gutiérrez, Andrea, Myers, Adam, Nie, Jundan, Palanque-Delabrouille, Nathalie, Percival, Will, Prada, Francisco, Rossi, Graziano, Sanchez, Eusebio, Schlegel, David, Schubnell, Michael, Silber, Joseph Harry, Sprayberry, David, Tarlé, Gregory, Magana, Mariana Vargas, Weaver, Benjamin Alan, Wechsler, Risa, Zhou, Zhimin, and Zou, Hu
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - Astrophysics of Galaxies - Abstract
The Dark Energy Spectroscopic Instrument (DESI) Peculiar Velocity Survey aims to measure the peculiar velocities of early and late type galaxies within the DESI footprint using both the Fundamental Plane and Tully-Fisher relations. Direct measurements of peculiar velocities can significantly improve constraints on the growth rate of structure, reducing uncertainty by a factor of approximately 2.5 at redshift 0.1 compared to the DESI Bright Galaxy Survey's redshift space distortion measurements alone. We assess the quality of stellar velocity dispersion measurements from DESI spectroscopic data. These measurements, along with photometric data from the Legacy Survey, establish the Fundamental Plane relation and determine distances and peculiar velocities of early-type galaxies. During Survey Validation, we obtain spectra for 6698 unique early-type galaxies, up to a photometric redshift of 0.15. 64\% of observed galaxies (4267) have relative velocity dispersion errors below 10\%. This percentage increases to 75\% if we restrict our sample to galaxies with spectroscopic redshifts below 0.1. We use the measured central velocity dispersion, along with photometry from the DESI Legacy Imaging Surveys, to fit the Fundamental Plane parameters using a 3D Gaussian maximum likelihood algorithm that accounts for measurement uncertainties and selection cuts. In addition, we conduct zero-point calibration using the absolute distance measurements to the Coma cluster, leading to a value of the Hubble constant, $H_0 = 76.05 \pm 0.35$(statistical) $\pm 0.49$(systematic FP) $\pm 4.86$(statistical due to calibration) $\mathrm{km \ s^{-1} Mpc^{-1}}$. This $H_0$ value is within $2\sigma$ of Planck Cosmic Microwave Background results and within $1\sigma$, of other low redshift distance indicator-based measurements., Comment: 18 pages, 9 figures, 2 tables. Submitted for publication in MNRAS
- Published
- 2024
46. Detection of the large-scale tidal field with galaxy multiplet alignment in the DESI Y1 spectroscopic survey
- Author
-
Lamman, Claire, Eisenstein, Daniel, Forero-Romero, Jaime E., Aguilar, Jessica Nicole, Ahlen, Steven, Bailey, Stephen, Bianchi, Davide, Brooks, David, Claybaugh, Todd, de la Macorra, Axel, Doel, Peter, Ferraro, Simone, Font-Ribera, Andreu, Gaztañaga, Enrique, Gontcho, Satya Gontcho A, Gutierrez, Gaston, Honscheid, Klaus, Howlett, Cullan, Kremin, Anthony, Lambert, Andrew, Landriau, Martin, Guillou, Laurent Le, Levi, Michael E., Meisner, Aaron, Miquel, Ramon, Moustakas, John, Newman, Jeffrey A., Niz, Gustavo, Prada, Francisco, Pérez-Ràfols, Ignasi, Ross, Ashley J., Rossi, Graziano, Sanchez, Eusebio, Schubnell, Michael, Sprayberry, David, Tarlé, Gregory, Vargas-Magaña, Mariana, Weaver, Benjamin Alan, and Zou, Hu
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We explore correlations between the orientations of small galaxy groups, or "multiplets", and the large-scale gravitational tidal field. Using data from the Dark Energy Spectroscopic Instrument (DESI) Y1 survey, we detect the intrinsic alignment (IA) of multiplets to the galaxy-traced matter field out to separations of 100 Mpc/h. Unlike traditional IA measurements of individual galaxies, this estimator is not limited by imaging of galaxy shapes and allows for direct IA detection beyond redshift z = 1. Multiplet alignment is a form of higher-order clustering, for which the scale-dependence traces the underlying tidal field and amplitude is a result of small-scale (< 1 Mpc/h) dynamics. Within samples of bright galaxies (BGS), luminous red galaxies (LRG) and emission-line galaxies (ELG), we find similar scale-dependence regardless of intrinsic luminosity or colour. This is promising for measuring tidal alignment in galaxy samples that typically display no intrinsic alignment. DESI's LRG mock galaxy catalogues created from the AbacusSummit N-body simulations produce a similar alignment signal, though with a 33% lower amplitude at all scales. An analytic model using a non-linear power spectrum (NLA) only matches the signal down to 20 Mpc/h. Our detection demonstrates that galaxy clustering in the non-linear regime of structure formation preserves an interpretable memory of the large-scale tidal field. Multiplet alignment complements traditional two-point measurements by retaining directional information imprinted by tidal forces, and contains additional line-of-sight information compared to weak lensing. This is a more effective estimator than the alignment of individual galaxies in dense, blue, or faint galaxy samples., Comment: For an accessible summary of this paper, see https://cmlamman.github.io/doc/multipletIA_summary.pdf
- Published
- 2024
47. The atomic gas sequence and mass-metallicity relation from dwarfs to massive galaxies
- Author
-
Scholte, D., Saintonge, A., Moustakas, J., Catinella, B., Zou, H., Dey, B., Aguilar, J., Ahlen, S., Anand, A., Blum, R., Brooks, D., Circosta, C., Claybaugh, T., de la Macorra, A., Doel, P., Font-Ribera, A., Förster, P. U., Forero-Romero, J. E., Gaztañaga, E., Gontcho, S. Gontcho A, Juneau, S., Kehoe, R., Kisner, T., Koposov, S. E., Kremin, A., Lambert, A., Landriau, M., Maraston, C., Martini, P., Meisner, A., Mighty, A. S., Miquel, R., Myers, A. D., Nie, J., Poppett, C., Prada, F., Rezaie, M., Rossi, G., Sanchez, E., Schubnell, M., Silber, J., Sprayberry, D., Siudek, M., Speranza, F., Tarlé, G., and Weaver, B. A.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
Galaxy scaling relations provide insights into the processes that drive galaxy evolution. The extension of these scaling relations into the dwarf galaxy regime is of particular interest. This is because dwarf galaxies represent a crucial stage in galaxy evolution, and understanding them could also shed light on their role in reionising the early Universe. There is currently no consensus on the processes that dominate the evolution of dwarfs. In this work we constrain the atomic gas sequence (stellar mass vs. atomic gas fraction) and mass-metallicity relation (stellar mass vs. gas phase metallicity) from dwarf ($10^{6.5}$ $\textrm{M}_{\odot}$) to massive ($10^{11.5}$ $\textrm{M}_{\odot}$) galaxies in the local Universe. The combined optical and 21-cm spectroscopic observations of the DESI and ALFALFA surveys allow us to simultaneously constrain both scaling relations. We find a slope change of the atomic gas sequence at a stellar mass of $\sim 10^{9} ~\textrm{M}_{\odot}$. We also find that the shape and scatter of the atomic gas sequence and mass-metallicity relation are strongly linked for both dwarfs and more massive galaxies. Consequently, the low mass slope change of the atomic gas sequence is imprinted onto the mass-metallicity relation of dwarf galaxies. The mass scale of the measured slope change is consistent with a predicted escape velocity threshold below which low mass galaxies experience significant supernova-driven gas loss, as well as with a reduction in cold gas accretion onto more massive galaxies., Comment: 16 pages, 10 figures, submitted to MNRAS
- Published
- 2024
48. Changing-look Active Galactic Nuclei from the Dark Energy Spectroscopic Instrument. II. Statistical Properties from the First Data Release
- Author
-
Guo, Wei-Jian, Zou, Hu, Greenwell, Claire L., Alexander, David M., Fawcett, Victoria A., Pan, Zhiwei, Siudek, Malgorzata, Aguilar, Jessica Nicole, Ahlen, Steven, Brooks, David, Claybaugh, Todd, Dawson, Kyle, De La Macorra, Axel, Doel, Peter, Font-Ribera, Andreu, Gaztanaga, Enrique, Gontcho, Satya Gontcho A, Gutierrez, Gaston, Kehoe, Robert, Kisner, Theodore, Landriau, Martin, Guillou, Laurent Le, Manera, Marc, Meisner, Aaron, Mique, Ramon, Moustakas, John, Prada, Francisco, Rossi, Graziano, Sanchez, Eusebio, Schubnell, Michael, Sprayberry, David, Sui, Jipeng, Tarle, Gregory, Weaver, Benjamin Alan, Xiao, Yun-Ao, and Zou, Siwei
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We present the identification of changing-look active galactic nuclei (CL-AGNs) from the Dark Energy Spectroscopic Instrument First Data Release and Sloan Digital Sky Survey Data Release 16 at z \leq 0.9. To confirm the CL-AGNs, we utilize spectral flux calibration assessment via an [O\,{\sc iii}]-based calibration, pseudo-photometry examination, and visual inspection. This rigorous selection process allows us to compile a statistical catalog of 561 CL-AGNs, encompassing 527 $\rm H\beta$, 149$\rm H\alpha$, and 129 Mg II CL behaviors. In this sample, we find 1) a 283:278 ratio of turn-on to turn-off CL-AGNs. 2) the critical value for CL events is confirmed around Eddington ratio \sim 0.01. 3) a strong correlation between the change in the luminosity of the broad emission lines (BEL) and variation in the continuum luminosity, with Mg II and $\rm H\beta$ displaying similar responses during CL phases. 4) the Baldwin-Phillips-Terlevich diagram for CL-AGNs shows no statistically difference from the general AGN catalog. 5) five CL-AGNs are associated with asymmetrical mid-infrared flares, possibly linked to tidal disruption events. Given the large CL-AGNs and the stochastic sampling of spectra, we propose that some CL events are inherently due to typical AGN variability during low accretion rates, particularly for CL events of the singular BEL. Finally, we introduce a Peculiar CL phase, characterized by a gradual decline over decades in the light curve and the complete disappearance of entire BEL in faint spectra, indicative of a real transition in the accretion disk., Comment: Submitted to ApJS, comments welcome
- Published
- 2024
49. $I$-Love-$Q$, and $\delta M$ too: The role of the mass in universal relations of compact stars
- Author
-
Aranguren, Eneko, Font, José A., Sanchis-Gual, Nicolas, and Vera, Raül
- Subjects
General Relativity and Quantum Cosmology ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Solar and Stellar Astrophysics - Abstract
In the study of rotating neutron stars the $I$-Love-$Q$ relations refer to the existence of various approximate, equation of state-independent relations involving the moment of inertia, the Love number and the quadrupole moment. These relations are relevant for observational astrophysics, since they allow (in theory) the inference of any two quantities within the $I$-Love-$Q$ triad out of the third one alone. However, the quantities involved in the relations are, in fact, normalized by a parameter $M_0$ that arises in the usual perturbative analytical approach as the mass of the background configuration. Since $M_0$ is not the mass of the rotating star $M_S$, it is not an observational quantity, which may affect the application of the relations to actual observations. This situation is usually ignored in most studies by taking $M_0$ to be the mass of the star, an approximation that can, in some cases, be inconsistent. In this paper we extract the value of $M_0$ using an $\textit{extended}$ version of the universal relations that involve a fourth parameter, $\delta M$, proportional to the difference $M_S-M_0$. We analyze to which degree this extended set of relations yields a more precise inference of compact star properties and equation of state parameters., Comment: 15 pages, 6 figures, 4 tables
- Published
- 2024
50. WaterLily.jl: A differentiable and backend-agnostic Julia solver to simulate incompressible viscous flow and dynamic bodies
- Author
-
Weymouth, Gabriel D. and Font, Bernat
- Subjects
Physics - Fluid Dynamics ,Physics - Computational Physics - Abstract
Integrating computational fluid dynamics (CFD) software into optimization and machine-learning frameworks is hampered by the rigidity of classic computational languages and the slow performance of more flexible high-level languages. In this work, we introduce WaterLily.jl: an open-source incompressible viscous flow solver written in the Julia language. An immersed boundary method is used to enforce the effect of solid boundaries on flow past complex geometries with arbitrary motions. The small code base is multidimensional, multiplatform and backend-agnostic (serial and multithreaded CPU, and GPU execution). Additionally, the dynamically typed language allows the solver to be fully differentiable using automatic differentiation. The computational time per time step scales linearly with the number of degrees of freedom (DOF) on CPUs, and we measure up to a 200x speed-up using CUDA kernels resulting in a cost of 1.44 nanoseconds per DOF and time step. This leads to comparable performance with low-level CFD solvers written in C and Fortran on research-scale problems, opening up exciting possible future applications on the cutting edge of machine-learning research., Comment: 12 pages, 8 figures, 1 table
- Published
- 2024
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.