17 results on '"A. H. W. M. Coolen"'
Search Results
2. Apercal - The Apertif calibration pipeline.
- Author
-
Björn Adebahr, R. Schulz, Tammo Jan Dijkema, V. A. Moss, André R. Offringa, A. Kutkin, Jan M. van der Hülst, B. S. Frank, N. P. E. Vilchez, Joris Verstappen, Elizabeth A. K. Adams, W. J. G. de Blok, Helga Denes, Kelley M. Hess, D. Lucero, Raffaella Morganti, Tom Oosterloo, D.-J. Pisano, Marianna V. Ivashina, W. A. van Cappellen, L. D. Connor, A. H. W. M. Coolen, S. Damstra, G. Marcel Loose, Y. Maan, F. M. Maccagni, A. Mika, H. Mulder, Leon C. Oostrum, E. Orrú, R. Smits, D. van der Schuur, Joeri van Leeuwen, Dany Vohl, Stefan J. Wijnholds, and J. Ziemke
- Published
- 2022
- Full Text
- View/download PDF
3. Characterising the Apertif primary beam response
- Author
-
H. Dénes, K. M. Hess, E. A. K. Adams, A. Kutkin, R. Morganti, J. M. van der Hulst, T. A. Oosterloo, V. A. Moss, B. Adebahr, W. J. G. de Blok, M. V. Ivashina, A. H. W. M. Coolen, S. Damstra, B. Hut, G. M. Loose, D. M. Lucero, Y. Maan, Á. Mika, M. J. Norden, L. C. Oostrum, D. J. Pisano, R. Smits, W. A. van Cappellen, R. van den Brink, D. van der Schuur, G. N. J. van Diepen, J. van Leeuwen, D. Vohl, S. J. Wijnholds, J. Ziemke, Ministerio de Ciencia e Innovación (España), European Commission, European Research Council, German Research Foundation, Astronomy, and Kapteyn Astronomical Institute
- Subjects
Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Surveys ,Methods: observational ,Space and Planetary Science ,Instrumentation: interferometers ,Physics::Accelerator Physics ,Instrumentation: detectors ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Astrophysics::Galaxy Astrophysics ,Telescopes - Abstract
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited., Context. Phased array feeds (PAFs) are multi-element receivers in the focal plane of a telescope that make it possible to simultaneously form multiple beams on the sky by combining the complex gains of the individual antenna elements. Recently, the Westerbork Synthesis Radio Telescope (WSRT) was upgraded with PAF receivers to carry out several observing programs, including two imaging surveys and a time-domain survey. The Apertif imaging surveys use a configuration of 40 partially overlapping compound beams (CBs) simultaneously formed on the sky and arranged in an approximately rectangular shape. Aims. This work is aimed at characterising the response of the 40 Apertif CBs to create frequency-resolved I, XX, and YY polarization empirical beam shapes. The measured CB maps can be used for the image deconvolution, primary beam correction, and mosaicking processes of Apertif imaging data. Methods. We used drift scan measurements to measure the response of each of the 40 Apertif CBs. We derived beam maps for all individual beams in I, XX, and YY polarisation in 10 or 18 frequency bins over the same bandwidth as the Apertif imaging surveys. We sampled the main lobe of the beams and the side lobes up to a radius of 0.6 degrees from the beam centres. In addition, we derived beam maps for each individual WSRT dish. Results. We present the frequency and time dependence of the beam shapes and sizes. We compared the compound beam shapes derived with the drift scan method to beam shapes derived with an independent method using a Gaussian Process Regression comparison between the Apertif continuum images and the NRAO VLA Sky Survey (NVSS) catalogue. We find a good agreement between the beam shapes derived with the two independent methods. © H. Dénes et al. 2022., This work makes use of data from the Apertif system installed at the Westerbork Synthesis Radio Telescope owned by ASTRON. ASTRON, the Netherlands Institute for Radio Astronomy, is an institute of the Dutch Research Council (“De Nederlandse Organisatie voor Wetenschappelijk Onderzoek, NWO). K.M.H. acknowledges financial support from the State Agency for Research of the Spanish Ministry of Science, Innovation and universities through the “Center of Excellence Severo Ochoa” awarded to the Instituto de Astrofísica de Andalucía (SEV-2017-0709) from the coordination of the participation in SKA-SPAIN, funded by the Ministry of Science and innovation (MICIN). EAKA is supported by the WISE research programme, which is financed by the Netherlands Organization for Scientific Research (NWO). J.M.vd.H. and K.M.H. acknowledge funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement No. 291531 (‘HIStoryNU’). B.A. acknowledges funding from the German Science Foundation DFG, within the Collaborative Research Center SFB1491 “Cosmic Interacting Matters - From Source to Signal”. Y.M., L.C.O., and R.S. acknowledge funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement No. 617199. J.vL. acknowledges funding from Vici research programme ‘ARGO’ with project number 639.043.815, financed by the Dutch Research Council (NWO). D.V. acknowledges support from the Netherlands eScience Center (NLeSC) under grant ASDI.15.406. This research has made use of NUMPY (van der Walt et al. 2011), SCIPY (Virtanen et al. 2020), ASTROPY, a community-developed core PYTHON package for Astronomy (Astropy Collaboration 2013, 2018; http://www.astropy.org), and scikit-learn (Pedregosa et al. 2011). Data availability: The FITS format CB maps generated from the drift scan observations are available from zenodo as two data sets. Frequency setting 1130-1430 MHz DOI: https://doi.org/10.5281/zenodo.6615555, 1220–1520 MHz DOI: https://doi.org/10.5281/zenodo.6544109. The raw drift scan data are stored on the Apertif Long Term Storage and can be requested for further analysis trough the ASTRON helpdesk (https://support.astron.nl/sdchelpdesk). The observation taskIDs used for the individual drift scan beam maps are listed within aperPB (https://github.com/apertif/aperPB, https://doi.org/10.5281/zenodo.6544109) in the task_id_lists directory with the following file names: task_ids_{beamID}.txt. The GP CB maps are available within the Apertif DR1, trough the ASTRON Virtual Observatory (https://vo.astron.nl/; detailed documentation on the Apertif DR1 is available here: http://hdl.handle.net/21.12136/B014022C-978B-40F6-96C6-1A3B1F4A3DB0).
- Published
- 2022
4. First release of Apertif imaging survey data
- Author
-
E. A. K. Adams, B. Adebahr, W. J. G. de Blok, H. Dénes, K. M. Hess, J. M. van der Hulst, A. Kutkin, D. M. Lucero, R. Morganti, V. A. Moss, T. A. Oosterloo, E. Orrú, R. Schulz, A. S. van Amesfoort, A. Berger, O. M. Boersma, M. Bouwhuis, R. van den Brink, W. A. van Cappellen, L. Connor, A. H. W. M. Coolen, S. Damstra, G. N. J. van Diepen, T. J. Dijkema, N. Ebbendorf, Y. G. Grange, R. de Goei, A. W. Gunst, H. A. Holties, B. Hut, M. V. Ivashina, G. I. G. Józsa, J. van Leeuwen, G. M. Loose, Y. Maan, M. Mancini, Á. Mika, H. Mulder, M. J. Norden, A. R. Offringa, L. C. Oostrum, I. Pastor-Marazuela, D. J. Pisano, A. A. Ponomareva, J. W. Romein, M. Ruiter, A. P. Schoenmakers, D. van der Schuur, J. J. Sluman, R. Smits, K. J. C. Stuurwold, J. Verstappen, N. P. E. Vilchez, D. Vohl, K. J. Wierenga, S. J. Wijnholds, E. E. M. Woestenburg, A. W. Zanting, J. Ziemke, Astronomy, Kapteyn Astronomical Institute, Ministerio de Ciencia e Innovación (España), European Commission, European Research Council, and German Research Foundation
- Subjects
Galaxies: ISM ,Radio lines: galaxies ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Polarization ,FOS: Physical sciences ,Astronomy and Astrophysics ,Surveys ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Astrophysics - Astrophysics of Galaxies ,Radio continuum: galaxies - Abstract
Full list of authors: Adams, E. A. K.; Adebahr, B.; de Blok, W. J. G.; Denes, H.; Hess, K. M.; van der Hulst, J. M.; Kutkin, A.; Lucero, D. M.; Morganti, R.; Moss, V. A.; Oosterloo, T. A.; Orru, E.; Schulz, R.; van Amesfoort, A. S.; Berger, A.; Boersma, O. M.; Bouwhuis, M.; van den Brink, R.; van Cappellen, W. A.; Connor, L.; Coolen, A. H. W. M.; Damstra, S.; van Diepen, G. N. J.; Dijkema, T. J.; Ebbendorf, N.; Grange, Y. G.; de Goei, R.; Gunst, A. W.; Holties, H. A.; Hut, B.; Ivashina, M., V; Jozsa, G. I. G.; van Leeuwen, J.; Loose, G. M.; Maan, Y.; Mancini, M.; Mika, A.; Mulder, H.; Norden, M. J.; Offringa, A. R.; Oostrum, L. C.; Pastor-Marazuela, I; Pisano, D. J.; Ponomareva, A. A.; Romein, J. W.; Ruiter, M.; Schoenmakers, A. P.; van der Schuur, D.; Sluman, J. J.; Smits, R.; Stuurwold, K. J. C.; Verstappen, J.; Vilchez, N. P. E.; Vohl, D.; Wierenga, K. J.; Wijnholds, S. J.; Woestenburg, E. E. M.; Zanting, A. W.; Ziemke, J.--Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited., Context. Apertif is a phased-array feed system for the Westerbork Synthesis Radio Telescope, providing forty instantaneous beams over 300 MHz of bandwidth. A dedicated survey program utilizing this upgrade started on 1 July 2019, with the last observations taken on 28 February 2022. The imaging survey component provides radio continuum, polarization, and spectral line data. Aims. Public release of data is critical for maximizing the legacy of a survey. Toward that end, we describe the release of data products from the first year of survey operations, through 30 June 2020. In particular, we focus on defining quality control metrics for the processed data products. Methods. The Apertif imaging pipeline, Apercal, automatically produces non-primary beam corrected continuum images, polarization images and cubes, and uncleaned spectral line and dirty beam cubes for each beam of an Apertif imaging observation. For this release, processed data products are considered on a beam-by-beam basis within an observation. We validate the continuum images by using metrics that identify deviations from Gaussian noise in the residual images. If the continuum image passes validation, we release all processed data products for a given beam. We apply further validation to the polarization and line data products and provide flags indicating the quality of those data products. Results. We release all raw observational data from the first year of survey observations, for a total of 221 observations of 160 independent target fields, covering approximately one thousand square degrees of sky. Images and cubes are released on a per beam basis, and 3374 beams (of 7640 considered) are released. The median noise in the continuum images is 41.4 uJy beam−1, with a slightly lower median noise of 36.9 uJy beam−1 in the Stokes V polarization image. The median angular resolution is 11.6″/sin δ. The median noise for all line cubes, with a spectral resolution of 36.6 kHz, is 1.6 mJy beam−1, corresponding to a 3-σ H I column density sensitivity of 1.8 × 1020 atoms cm−2 over 20 km s−1 (for a median angular resolution of 24″ × 15″). Line cubes at lower frequency have slightly higher noise values, consistent with the global RFI environment and overall Apertif system performance. We also provide primary beam images for each individual Apertif compound beam. The data are made accessible using a Virtual Observatory interface and can be queried using a variety of standard tools. © E. A. K. Adams et al. 2022., This work makes use of data from the Apertif system installed at the Westerbork Synthesis Radio Telescope owned by ASTRON. ASTRON, the Netherlands Institute for Radio Astronomy, is an institute of the Dutch Research Council (“De Nederlandse Organisatie voor Wetenschappelijk Onderzoek, NWO). Apertif was partly financed by the NWO Groot projects Apertif (175.010.2005.015) and Apropos (175.010.2009.012). This work was partly supported by funding from the European Research Council under the European Union’s Seventh Frame-work Programme (FP/2007-2013), through ERC Grant Agreement No. 291531 (‘HIStoryNU’, PI: JMvdH) and ERC Advanced Grant RADIOLIFE-320745 (PI: RM), in addition to funding from NWO via grant TOP1EW.14.105 (PI: TAO). E.A.K.A. is supported by the WISE research programme, which is financed by NWO. B.A. acknowledges funding from the German Science Foundation DFG, within the Collaborative Research Center SFB1491 “Cosmic Interacting Matters - From Source to Signal”. KMH acknowledges financial support from the State Agency for Research of the Spanish Ministry of Science, Innovation and Universities through the “Center of Excellence Severo Ochoa” awarded to the Instituto de Astrofísica de Andalucía (SEV-2017-0709), from the coordination of the participation in SKA-SPAIN, funded by the Ministry of Science and Innovation (MCIN). OMB and JvL acknowledge funding from NWO under the Vici research program “ARGO” with project number 639.043.815. Y.M., L.C.O., R.S. and J.vL. acknowledge funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement No. 617199 (“ALERT”). IPM acknowledges funding from the Netherlands Research School for Astronomy (grant no. NOVA5-NW3-10.3.5.14). A.A.P. acknowledges support of the STFC consolidated grant ST/S000488/1. DV acknowledges support from the Netherlands eScience Center (NLeSC) under grant ASDI.15.406. This research has made use of NASA’s Astrophysics Data System Bibliographic Services and Astropy, (http://www.astropy.org) a community-developed core Python package for Astronomy (Astropy Collaboration 2013, 2018).
- Published
- 2022
5. The Apertif Radio Transient System (ARTS): Design, commissioning, data release, and detection of the first five fast radio bursts
- Author
-
Joeri van Leeuwen, Eric Kooistra, Leon Oostrum, Liam Connor, Jonathan E. Hargreaves, Yogesh Maan, Inés Pastor-Marazuela, Emily Petroff, Daniel van der Schuur, Alessio Sclocco, Samayra M. Straal, Dany Vohl, Stefan J. Wijnholds, Elizabeth A. K. Adams, Björn Adebahr, Jisk Attema, Cees Bassa, Jeanette E. Bast, Anna Bilous, Willem J. G. de Blok, Oliver M. Boersma, Wim A. van Cappellen, Arthur H. W. M. Coolen, Sieds Damstra, Helga Dénes, Ger N. J. van Diepen, David W. Gardenier, Yan G. Grange, André W. Gunst, Kelley M. Hess, Hanno Holties, Thijs van der Hulst, Boudewijn Hut, Alexander Kutkin, G. Marcel Loose, Danielle M. Lucero, Ágnes Mika, Klim Mikhailov, Raffaella Morganti, Vanessa A. Moss, Henk Mulder, Menno J. Norden, Tom A. Oosterloo, Emaneula Orrú, Zsolt Paragi, Jan-Pieter R. de Reijer, Arno P. Schoenmakers, Klaas J. C. Stuurwold, Sander ter Veen, Yu-Yang Wang, Alwin W. Zanting, and Jacob Ziemke
- Subjects
Space and Planetary Science ,Astronomy and Astrophysics - Abstract
Fast radio bursts (FRBs) must be powered by uniquely energetic emission mechanisms. This requirement has eliminated a number of possible source types, but several remain. Identifying the physical nature of FRB emitters arguably requires good localisation of more detections, as well as broad-band studies enabled by real-time alerting. In this paper, we present the Apertif Radio Transient System (ARTS), a supercomputing radio-telescope instrument that performs real-time FRB detection and localisation on the Westerbork Synthesis Radio Telescope (WSRT) interferometer. It reaches coherent-addition sensitivity over the entire field of the view of the primary-dish beam. After commissioning results verified that the system performed as planned, we initiated the Apertif FRB survey (ALERT). Over the first 5 weeks we observed at design sensitivity in 2019, we detected five new FRBs, and interferometrically localised each of them to 0.4–10 sq. arcmin. All detections are broad band, very narrow, of the order of 1 ms in duration, and unscattered. Dispersion measures are generally high. Only through the very high time and frequency resolution of ARTS are these hard-to-find FRBs detected, producing an unbiased view of the intrinsic population properties. Most localisation regions are small enough to rule out the presence of associated persistent radio sources. Three FRBs cut through the halos of M31 and M33. We demonstrate that Apertif can localise one-off FRBs with an accuracy that maps magneto-ionic material along well-defined lines of sight. The rate of one every ~7 days ensures a considerable number of new sources are detected for such a study. The combination of the detection rate and localisation accuracy exemplified by the first five ARTS FRBs thus marks a new phase in which a growing number of bursts can be used to probe our Universe.
- Published
- 2023
- Full Text
- View/download PDF
6. Apertif: Phased array feeds for the Westerbork Synthesis Radio Telescope. System overview and performance characteristics
- Author
-
W. A. van Cappellen, T. A. Oosterloo, M. A. W. Verheijen, E. A. K. Adams, B. Adebahr, R. Braun, K. M. Hess, H. Holties, J. M. van der Hulst, B. Hut, E. Kooistra, J. van Leeuwen, G. M. Loose, R. Morganti, V. A. Moss, E. Orrú, M. Ruiter, A. P. Schoenmakers, N. J. Vermaas, S. J. Wijnholds, A. S. van Amesfoort, M. J. Arts, J. J. Attema, L. Bakker, C. G. Bassa, J. E. Bast, P. Benthem, R. Beukema, R. Blaauw, W. J. G. de Blok, M. Bouwhuis, R. H. van den Brink, L. Connor, A. H. W. M. Coolen, S. Damstra, G. N. J. van Diepen, R. de Goei, H. Dénes, M. Drost, N. Ebbendorf, B. S. Frank, D. W. Gardenier, M. Gerbers, Y. G. Grange, T. Grit, A. W. Gunst, N. Gupta, M. V. Ivashina, G. I. G. Józsa, G. H. Janssen, A. Koster, G. H. Kruithof, S. J. Kuindersma, A. Kutkin, D. M. Lucero, Y. Maan, F. M. Maccagni, J. van der Marel, A. Mika, J. Morawietz, H. Mulder, E. Mulder, M. J. Norden, A. R. Offringa, L. C. Oostrum, R. E. Overeem, Z. Paragi, H. J. Pepping, E. Petroff, D. J. Pisano, A. G. Polatidis, P. Prasad, J. P. R. de Reijer, J. W. Romein, J. Schaap, G. W. Schoonderbeek, R. Schulz, D. van der Schuur, A. Sclocco, J. J. Sluman, R. Smits, B. W. Stappers, S. M. Straal, K. J. C. Stuurwold, J. Verstappen, D. Vohl, K. J. Wierenga, E. E. M. Woestenburg, A. W. Zanting, J. Ziemke, Astronomy, and Kapteyn Astronomical Institute
- Subjects
Radio telescope ,Physics ,Space and Planetary Science ,Phased array ,Instrumentation: interferometers ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Astronomy and Astrophysics ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Surveys ,Telescopes - Abstract
We describe the APERture Tile In Focus (Apertif) system, a phased array feed (PAF) upgrade of the Westerbork Synthesis Radio Telescope that transforms this telescope into a high-sensitivity, wide-field-of-view L-band imaging and transient survey instrument. Using novel PAF technology, up to 40 partially overlapping beams are formed on the sky simultaneously, significantly increasing the survey speed of the telescope. With this upgraded instrument, an imaging survey covering an area of 2300 deg2 is being performed that will deliver both continuum and spectral line datasets, of which the first data have been publicly released. In addition, a time domain transient and pulsar survey covering 15 000 deg2 is in progress. An overview of the Apertif science drivers, hardware, and software of the upgraded telescope is presented, along with its key performance characteristics.
- Published
- 2022
7. Sub-arcsecond imaging with the International LOFAR Telescope I. Foundational calibration strategy and pipeline
- Author
-
Martin J. Hardcastle, H. Paas, Matthias Hoeft, J. Moldon, R. Pizzo, Arthur Corstanje, A. Kappes, S. Mooney, John McKean, Gottfried Mann, Pietro Zucca, Harvey Butcher, M. Pandey-Pommier, Joseph R. Callingham, A. Nelles, S. Duscha, Marco Iacobelli, Aleksander Shulevski, V. N. Pandey, Ph. Zarka, Annalisa Bonafede, S. Badole, M. Ruiter, Ashish Asgekar, Hanna Rothkaehl, M. P. van Haarlem, P. Kukreti, Wolfgang Reich, Michel Tagger, J. M. Anderson, Marian Soida, A. H. W. M. Coolen, Judith H. Croston, Olaf Wucknitz, Neal Jackson, Heino Falcke, W. N. Brouw, Jochen Eislöffel, Philip Best, A. Drabent, F. Sweijen, F. de Gasperin, Dominik J. Schwarz, Cyril Tasse, J. B. R. Oonk, J. M. Griessmeier, Benedetta Ciardi, S. Damstra, A. J. van der Horst, Stefan J. Wijnholds, C. Groeneveld, E. Jütte, D. Engels, I. M. Avruch, Ralph A. M. J. Wijers, Léon V. E. Koopmans, Timothy W. Shimwell, Emanuela Orru, Andrzej Krankowski, R. J. van Weeren, Leah K. Morabito, A. W. Gunst, I. van Bemmel, D. Venkattu, Mark J. Bentum, Adam T. Deller, Christian Vocks, George K. Miley, John Conway, M. A. Garrett, M. Bondi, Matthias Kadler, E. Bonnassieux, H. J. A. Röttgering, API Other Research (FNWI), High Energy Astrophys. & Astropart. Phys (API, FNWI), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Unité Scientifique de la Station de Nançay (USN), Centre National de la Recherche Scientifique (CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), Galaxies, Etoiles, Physique, Instrumentation (GEPI), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Observatoire des Sciences de l'Univers en région Centre (OSUC), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), European Commission, European Research Council, Ministerio de Ciencia e Innovación (España), Science and Technology Facilities Council (UK), Astronomy, and Kapteyn Astronomical Institute
- Subjects
Astronomy ,Pipeline (computing) ,active ,Field of view ,Astrophysics ,01 natural sciences ,law.invention ,high angular resolution, radiation mechanisms ,law ,galaxies ,active, galaxies ,010303 astronomy & astrophysics ,media_common ,Physics ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,Astrometry ,Interferometry ,Astrophysics - Instrumentation and Methods for Astrophysics ,high angular resolution ,jets ,active [Galaxies] ,media_common.quotation_subject ,galaxies: active ,FOS: Physical sciences ,Telescope ,0103 physical sciences ,Calibration ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Remote sensing ,non-thermal [Radiation mechanisms] ,non-thermal radiation ,010308 nuclear & particles physics ,techniques: high angular resolution ,active galaxies ,Astronomy and Astrophysics ,LOFAR ,radiation mechanisms: non-thermal ,galaxies: jets ,Astrophysics - Astrophysics of Galaxies ,high angular resolution [Techniques] ,non-thermal ,radiation mechanisms ,[SDU]Sciences of the Universe [physics] ,Space and Planetary Science ,Sky ,Astrophysics of Galaxies (astro-ph.GA) ,non-thermal, galaxies ,jets, Astrophysics - Instrumentation and Methods for Astrophysics, Astrophysics - Astrophysics of Galaxies ,jets [Galaxies] ,techniques ,jets of galaxies - Abstract
Full list of authors: Morabito, L. K.; Jackson, N. J.; Mooney, S.; Sweijen, F.; Badole, S.; Kukreti, P.; Venkattu, D.; Groeneveld, C.; Kappes, A.; Bonnassieux, E.; Drabent, A.; Iacobelli, M.; Croston, J. H.; Best, P. N.; Bondi, M.; Callingham, J. R.; Conway, J. E.; Deller, A. T.; Hardcastle, M. J.; McKean, J. P.; Miley, G. K.; Moldon, J.; Röttgering, H. J. A.; Tasse, C.; Shimwell, T. W.; van Weeren, R. J.; Anderson, J. M.; Asgekar, A.; Avruch, I. M.; van Bemmel, I. M.; Bentum, M. J.; Bonafede, A.; Brouw, W. N.; Butcher, H. R.; Ciardi, B.; Corstanje, A.; Coolen, A.; Damstra, S.; de Gasperin, F.; Duscha, S.; Eislöffel, J.; Engels, D.; Falcke, H.; Garrett, M. A.; Griessmeier, J.; Gunst, A. W.; van Haarlem, M. P.; Hoeft, M.; van der Horst, A. J.; Jütte, E.; Kadler, M.; Koopmans, L. V. E.; Krankowski, A.; Mann, G.; Nelles, A.; Oonk, J. B. R.; Orru, E.; Paas, H.; Pandey, V. N.; Pizzo, R. F.; Pandey-Pommier, M.; Reich, W.; Rothkaehl, H.; Ruiter, M.; Schwarz, D. J.; Shulevski, A.; Soida, M.; Tagger, M.; Vocks, C.; Wijers, R. A. M. J.; Wijnholds, S. J.; Wucknitz, O.; Zarka, P.; Zucca, P., The International LOFAR Telescope is an interferometer with stations spread across Europe. With baselines of up to ~2000 km, LOFAR has the unique capability of achieving sub-arcsecond resolution at frequencies below 200 MHz. However, it is technically and logistically challenging to process LOFAR data at this resolution. To date only a handful of publications have exploited this capability. Here we present a calibration strategy that builds on previous high-resolution work with LOFAR. It is implemented in a pipeline using mostly dedicated LOFAR software tools and the same processing framework as the LOFAR Two-metre Sky Survey (LoTSS). We give an overview of the calibration strategy and discuss the special challenges inherent to enacting high-resolution imaging with LOFAR, and describe the pipeline, which is publicly available, in detail. We demonstrate the calibration strategy by using the pipeline on P205+55, a typical LoTSS pointing with an 8 h observation and 13 international stations. We perform in-field delay calibration, solution referencing to other calibrators in the field, self-calibration of these calibrators, and imaging of example directions of interest in the field. We find that for this specific field and these ionospheric conditions, dispersive delay solutions can be transferred between calibrators up to ~1.5° away, while phase solution transferral works well over ~1°. We also demonstrate a check of the astrometry and flux density scale with the in-field delay calibrator source. Imaging in 17 directions, we find the restoring beam is typically ~0.3′′ ×0.2′′ although this varies slightly over the entire 5 deg2 field of view. We find we can achieve ~80–300 μJy bm−1 image rms noise, which is dependent on the distance from the phase centre; typical values are ~90 μJy bm−1 for the 8 h observation with 48 MHz of bandwidth. Seventy percent of processed sources are detected, and from this we estimate that we should be able to image roughly 900 sources per LoTSS pointing. This equates to ~ 3 million sources in the northern sky, which LoTSS will entirely cover in the next several years. Future optimisation of the calibration strategy for efficient post-processing of LoTSS at high resolution makes this estimate a lower limit. © ESO 2022., This work made use of the Dutch national e-infrastructure with the support of the SURF Cooperative using grant no. EINF-262 LKM is grateful for support from the Medical Research Council (grant MR/T042842/1). S.M. acknowledges support from the Governmentof Ireland Postgraduate Scholarship Programme. E.B. acknowledges support from the ERC-ERG grant DRANOEL, n.714245. A.D. acknowledges support by the BMBF Verbundforschung under the grant 052020. J.H.C. acknowledges support from the UK Science and Technology Facilities Council (ST/R000794/1). P.N.B. is grateful for support from the UK STFC via grant ST/R000972/1. J.R.C. thanks the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) for support via the Talent Programme Veni grant. M.J.H. acknowledges support from the UK Science and Technology Facilities Council (ST/R000905/1). J.P.M. acknowledges support from the NetherlandsOrganization for Scientific Research (NWO, project number 629.001.023) and the Chinese Academy of Sciences (CAS, project number 114A11KYSB20170054). J.M. acknowledges financial support from the State Agency for Research of the Spanish MCIU through the “Center of Excellence Severo Ochoa” award to the Instituto de Astrofísicade Andalucía (SEV-2017-0709) and from the grant RTI2018-096228-B-C31 (MICIU/FEDER, EU). R.J.v.W. acknowledges support from the ERC Starting Grant ClusterWeb 804208. D.J.S. acknowledges support by the GermanFederal Ministry for Science and Research BMBF-Verbundforschungsprojekt D-LOFAR 2.0 (grant numbers 05A20PB1). LOFAR (van Haarlem et al. 2013) is the Low Frequency Array designed and constructed by ASTRON. It has observing, data processing, and data storage facilities in several countries, that are owned by various parties (each with their own funding sources), and that are collectively operated by the ILT foundation under a joint scientific policy. The ILT resources have benefitted from the following recent major funding sources: CNRS-INSU, Observatoire de Paris and Université d’Orléans, France; BMBF, MIWF-NRW, MPG, Germany; Science Foundation Ireland (SFI), Department of Business, Enterprise and Innovation (DBEI), Ireland; NWO, The Netherlands; The Science and Technology Facilities Council, UK; Ministry of Science and Higher Education, Poland.
- Published
- 2022
- Full Text
- View/download PDF
8. Sub-arcsecond imaging with the International LOFAR Telescope II. Completion of the LOFAR Long-Baseline Calibrator Survey
- Author
-
G. K. Miley, Annalisa Bonafede, M. P. van Haarlem, Jochen Eislöffel, John McKean, P. C. G. van Dijk, M. A. Garrett, B. Ciardi, R. Blaauw, E. Jütte, Harvey Butcher, O. Wucknitz, Luitje Koopmans, Oleg Smirnov, M. Pandey-Pommier, Pietro Zucca, Joseph R. Callingham, S. Mooney, R. J. van Weeren, A. Nelles, Antonia Rowlinson, W. Reich, Heino Falcke, S. Duscha, Rajan Chhetri, Emanuela Orrú, G. Mann, Dominik J. Schwarz, Michiel A. Brentjens, P. Zarka, M. Ruiter, Hanna Rothkaehl, Kaspars Prūsis, Ralph A. M. J. Wijers, S. Badole, Jean-Mathias Griessmeier, P. Maat, Neal Jackson, Marco Iacobelli, Jeremy J. Harwood, Andrzej Krankowski, M. J. Norden, Vishambhar Pandey, A. J. van der Horst, John Morgan, F. Sweijen, Adam Deller, George Heald, S. Damstra, Martin J. Hardcastle, Mark J. Bentum, Ashish Asgekar, Leah K. Morabito, A. W. Gunst, M. Tagger, A. Shulevski, C. Vocks, A. Drabent, Javier Moldon, A. H. W. M. Coolen, M. Paas, Atvars Nikolajevs, W. N. Brouw, J. Sluman, Roberto Pizzo, Marcus Brüggen, Henk Mulder, Matthias Hoeft, F. de Gasperin, I. M. Avruch, J. A. Zensus, Arthur Corstanje, Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Unité Scientifique de la Station de Nançay (USN), Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Centre National de la Recherche Scientifique (CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), European Commission, Ministerio de Ciencia e Innovación (España), Netherlands Organization for Scientific Research, UK Research and Innovation, Chinese Academy of Sciences, High Energy Astrophys. & Astropart. Phys (API, FNWI), Kapteyn Astronomical Institute, Center for Wireless Technology Eindhoven, and EM for Radio Science Lab
- Subjects
active -Radio continuum ,active [Galaxies] ,Radio galaxy ,galaxies -Atmospheric physics ,Astronomy ,media_common.quotation_subject ,FOS: Physical sciences ,Flux ,Murchison Widefield Array ,ionosphere ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Surveys ,Interplanetary scintillation ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Instrumentation ,Remote sensing ,media_common ,Physics ,Spectral index ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,Radio lines: galaxies ,Astrophysics::Instrumentation and Methods for Astrophysics ,interferometers [Instrumentation] ,Astronomy and Astrophysics ,Quasar ,LOFAR ,Galaxies: active ,interferometers -Techniques ,Astrophysics - Astrophysics of Galaxies ,galaxies [Radio lines] ,Space and Planetary Science ,Sky ,[SDU]Sciences of the Universe [physics] ,Instrumentation: interferometers ,Astrophysics of Galaxies (astro-ph.GA) ,Techniques: interferometric ,interferometric [Techniques] ,interferometric -Surveys -Galaxies ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
Full list of authors: Jackson, N.; Badole, S.; Morgan, J.; Chhetri, R.; Prūsis, K.; Nikolajevs, A.; Morabito, L.; Brentjens, M.; Sweijen, F.; Iacobelli, M.; Orrù, E.; Sluman, J.; Blaauw, R.; Mulder, H.; van Dijk, P.; Mooney, S.; Deller, A.; Moldon, J.; Callingham, J. R.; Harwood, J.; Hardcastle, M.; Heald, G.; Drabent, A.; McKean, J. P.; Asgekar, A.; Avruch, I. M.; Bentum, M. J.; Bonafede, A.; Brouw, W. N.; Brüggen, M.; Butcher, H. R.; Ciardi, B.; Coolen, A.; Corstanje, A.; Damstra, S.; Duscha, S.; Eislöffel, J.; Falcke, H.; Garrett, M.; de Gasperin, F.; Griessmeier, J. -M.; Gunst, A. W.; van Haarlem, M. P.; Hoeft, M.; van der Horst, A. J.; Jütte, E.; Koopmans, L. V. E.; Krankowski, A.; Maat, P.; Mann, G.; Miley, G. K.; Nelles, A.; Norden, M.; Paas, M.; Pandey, V. N.; Pandey-Pommier, M.; Pizzo, R. F.; Reich, W.; Rothkaehl, H.; Rowlinson, A.; Ruiter, M.; Shulevski, A.; Schwarz, D. J.; Smirnov, O.; Tagger, M.; Vocks, C.; van Weeren, R. J.; Wijers, R.; Wucknitz, O.; Zarka, P.; Zensus, J. A.; Zucca, P., The Low-Frequency Array (LOFAR) Long-Baseline Calibrator Survey (LBCS) was conducted between 2014 and 2019 in order to obtain a set of suitable calibrators for the LOFAR array. In this paper, we present the complete survey, building on the preliminary analysis published in 2016 which covered approximately half the survey area. The final catalogue consists of 30 006 observations of 24 713 sources in the northern sky, selected for a combination of high low-frequency radio flux density and flat spectral index using existing surveys (WENSS, NVSS, VLSS, and MSSS). Approximately one calibrator per square degree, suitable for calibration of ≥200 km baselines is identified by the detection of compact flux density, for declinations north of 30° and away from the Galactic plane, with a considerably lower density south of this point due to relative difficulty in selecting flat-spectrum candidate sources in this area of the sky. The catalogue contains indicators of degree of correlated flux on baselines between the Dutch core and each of the international stations, involving a maximum baseline length of nearly 2000 km, for all of the observations. Use of the VLBA calibrator list, together with statistical arguments by comparison with flux densities from lower-resolution catalogues, allow us to establish a rough flux density scale for the LBCS observations, so that LBCS statistics can be used to estimate compact flux densities on scales between 300 mas and 2′′, for sources observed in the survey. The survey is used to estimate the phase coherence time of the ionosphere for the LOFAR international baselines, with median phase coherence times of about 2 min varying by a few tens of percent between theshortest and longest baselines. The LBCS can be used to assess the structures of point sources in lower-resolution surveys, with significant reductions in the degree of coherence in these sources on scales between 2′′ and 300 mas. The LBCS survey sources show a greater incidence of compact flux density in quasars than in radio galaxies, consistent with unified schemes of radio sources. Comparison with samples of sources from interplanetary scintillation (IPS) studies with the Murchison Widefield Array shows consistent patterns of detection of compact structure in sources observed both interferometrically with LOFAR and using IPS. © ESO 2022., Support for the operation of the MWA is provided by the Australian Government (NCRIS), under a contract to Curtin University administered by Astronomy Australia Limited. We acknowledge the Pawsey Supercomputing Centre which is supported by the Western Australian and Australian Governments. A.D. acknowledges support by the BMBF Verbundforschung under the grant 052020. L.K.M. is grateful for support from the UKRI Future Leaders Fellowship (grant MR/T042842/1). J. Moldón acknowledges financial support from the State Agency for Research of the Spanish MCIU through the “Center of Excellence Severo Ochoa” award to the Instituto de Astrofísica de Andalucía (SEV-2017-0709) and from the grant RTI2018-096228-B-C31 (MICIU/FEDER, EU). J.P.M. acknowledges support from the Netherlands Organization for Scientific Research (NWO, project number 629.001.023) and the Chinese Academy of Sciences (CAS, project number 114A11KYSB20170054).
- Published
- 2022
- Full Text
- View/download PDF
9. Apertif: lessons learned operating a Phased Array Feed array
- Author
-
Henk Mulder, S. van der Tol, M. J. Norden, Emanuela Orrú, V. A. Moss, L. C. Oostrum, A. H. W. M. Coolen, A. P. Schoenmakers, H. Holties, J. van Leeuwen, M. Bouwhuis, N. Veermas, and Elizabeth A. K. Adams
- Subjects
Radio telescope ,Phased array feed ,business.industry ,Computer science ,Phased array ,Systems engineering ,Signal processing algorithms ,business ,Automation ,Radio astronomy - Abstract
Apertif is the phased array feeds (PAFs) system operational on the Westerbork Synthesis Radio Telescope. This paper will cover various aspects of the system describing how the instrument is operated on a daily basis. Focus will be given to the use of new technology adopted for the hardware monitoring, automation of operational routines, calibration of the instrument and the results and lessons learned by operating it.
- Published
- 2021
- Full Text
- View/download PDF
10. Chromatic periodic activity down to 120 megahertz in a fast radio burst
- Author
-
H. Dénes, S. M. Straal, Tom Oosterloo, Thijs van der Hulst, A. Kutkin, Joeri van Leeuwen, Dany Vohl, Henk Mulder, Jisk Attema, W. J. G. de Blok, M. J. Norden, Alessio Sclocco, Oliver M. Boersma, Á. Mika, S. Damstra, Sander ter Veen, Stefan J. Wijnholds, Kelley M. Hess, Emanuela Orrú, Daniel van der Schuur, Elizabeth A. K. Adams, E. Kooistra, Liam Connor, A. H. W. M. Coolen, Yogesh Maan, R. Smits, M. Ruiter, L. C. Oostrum, D. M. Lucero, Inés Pastor-Marazuela, B. Hut, Emily Petroff, V. Marianna Ivashina, A. V. Bilous, B. Adebahr, G. Marcel Loose, Vanessa A. Moss, High Energy Astrophys. & Astropart. Phys (API, FNWI), API Other Research (FNWI), Astronomy, and Kapteyn Astronomical Institute
- Subjects
Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Brightness ,Multidisciplinary ,High-energy astronomy ,Fast radio burst ,media_common.quotation_subject ,FOS: Physical sciences ,Astrophysics ,Radiation ,Wavelength ,Sky ,Chromatic scale ,Astrophysics - High Energy Astrophysical Phenomena ,media_common ,Time domain astronomy - Abstract
Fast radio bursts (FRBs) are extragalactic astrophysical transients whose brightness requires emitters that are highly energetic, yet compact enough to produce the short, millisecond-duration bursts. FRBs have thus far been detected between 300 MHz and 8 GHz, but lower-frequency emission has remained elusive. A subset of FRBs is known to repeat, and one of those sources, FRB 20180916B, does so with a 16.3 day activity period. Using simultaneous Apertif and LOFAR data, we show that FRB 20180916B emits down to 120 MHz, and that its activity window is both narrower and earlier at higher frequencies. Binary wind interaction models predict a narrower periodic activity window at lower frequencies, which is the opposite of our observations. Our detections establish that low-frequency FRB emission can escape the local medium. For bursts of the same fluence, FRB 20180916B is more active below 200 MHz than at 1.4 GHz. Combining our results with previous upper-limits on the all-sky FRB rate at 150 MHz, we find that there are 3-450 FRBs/sky/day above 50 Jy ms at 90% confidence. We are able to rule out the scenario in which companion winds cause FRB periodicity. We also demonstrate that some FRBs live in clean environments that do not absorb or scatter low-frequency radiation., Comment: 50 pages, 14 figures, 3 tables, submitted
- Published
- 2021
11. A search for radio emission from double-neutron star merger GW190425 using Apertif
- Author
-
Dany Vohl, G. M. Loose, A. Kutkin, Kelley M. Hess, L. C. Oostrum, Á. Mika, H. Dénes, S. Damstra, Marianna Ivashina, M. Ruiter, R. H. S. van den Brink, B. Adebahr, D. van der Schuur, Liam Connor, N. J. Vermaas, V. A. Moss, Yogesh Maan, J. M. van der Hulst, Henk Mulder, W. J. G. de Blok, A. H. W. M. Coolen, Oliver M. Boersma, Tom Oosterloo, Elizabeth A. K. Adams, R. Smits, Joeri van Leeuwen, J. Ziemke, D. M. Lucero, B. Hut, High Energy Astrophys. & Astropart. Phys (API, FNWI), API Other Research (FNWI), and Astronomy
- Subjects
Astrophysics and Astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,Monte Carlo method ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Radio telescope ,stars: neutron ,0103 physical sciences ,010306 general physics ,010303 astronomy & astrophysics ,Luminosity distance ,Astrophysics::Galaxy Astrophysics ,astro-ph.HE ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,Epoch (reference date) ,Detector ,Astronomy and Astrophysics ,Galaxy ,Afterglow ,Neutron star ,gravitational waves ,13. Climate action ,Space and Planetary Science ,Astrophysics - High Energy Astrophysical Phenomena ,radio continuum: stars - Abstract
Detection of the electromagnetic emission from coalescing binary neutron stars (BNS) is important for understanding the merger and afterglow. We present a search for a radio counterpart to the gravitational-wave source GW190425, a BNS merger, using Apertif on the Westerbork Synthesis Radio Telescope (WSRT). We observe a field of high probability in the associated localisation region for 3 epochs at 68, 90 and 109 days post merger. We identify all sources that exhibit flux variations consistent with the expected afterglow emission of GW190425. We also look for possible transients. These are sources which are only present in one epoch. In addition, we quantify our ability to search for radio afterglows in fourth and future observing runs of the gravitational-wave detector network using Monte Carlo simulations. We found 25 afterglow candidates based on their variability. None of these could be associated with a possible host galaxy at the luminosity distance of GW190425. We also found 55 transient afterglow candidates that were only detected in one epoch. All turned out to be image artefacts. In the fourth observing run, we predict that up to three afterglows will be detectable by Apertif. While we did not find a source related to the afterglow emission of GW190425, the search validates our methods for future searches of radio afterglows., 11 pages, 7 figures, accepted for publication
- Published
- 2021
12. Apertif view of the OH megamaser IRAS 10597+5926
- Author
-
M. J. Norden, A. Kutkin, Dany Vohl, Stefan J. Wijnholds, A. H. W. M. Coolen, R. Schulz, Á. Mika, L. C. Oostrum, S. Damstra, Henk Mulder, Tom Oosterloo, D. M. Lucero, H. Roberts, Jeremy Darling, Yogesh Maan, Joeri van Leeuwen, J. Ziemke, J. M. van der Hulst, M. Ruiter, W. J. G. de Blok, Kelley M. Hess, N. J. Vermaas, B. Adebahr, G. Marcel Loose, E. A. K. Adams, V. A. Moss, Raffaella Morganti, Marianna Ivashina, H. Dénes, API Other Research (FNWI), High Energy Astrophys. & Astropart. Phys (API, FNWI), Astronomy, and Kapteyn Astronomical Institute
- Subjects
Infrared ,Megamaser ,FOS: Physical sciences ,galaxies: starburst ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,01 natural sciences ,galaxies: groups: individual: IRAS 10597+5926 ,Luminosity ,law.invention ,masers ,law ,0103 physical sciences ,galaxies: interactions ,Astrophysics::Solar and Stellar Astrophysics ,Maser ,010306 general physics ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,radio lines: galaxies ,Luminous infrared galaxy ,Physics ,Star formation ,Astronomy and Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Galaxy ,13. Climate action ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Satellite ,galaxies: ISM - Abstract
We present the serendipitous detection of the two main OH maser lines at 1667 and 1665 MHz associated with IRAS 10597+5926 at z = 0.19612 in the untargeted Apertif Wide-area Extragalactic Survey (AWES), and the subsequent measurement of the OH 1612 MHz satellite line in the same source. With a total OH luminosity of log(L/L_Sun) = 3.90 +/- 0.03, IRAS 10597+5926 is the fourth brightest OH megamaser (OHM) known. We measure a lower limit for the 1667/1612 ratio of R_1612 > 45.9 which is the highest limiting ratio measured for the 1612 MHz OH satellite line to date. OH satellite line measurements provide a potentially valuable constraint by which to compare detailed models of OH maser pumping mechanisms. Optical imaging shows the galaxy is likely a late-stage merger. Based on published infrared and far ultraviolet fluxes, we find that the galaxy is an ultra luminous infrared galaxy (ULIRG) with log(L_TIR/L_Sun) = 12.24, undergoing a star burst with an estimated star formation rate of 179 +/- 40 M_Sun/yr. These host galaxy properties are consistent with the physical conditions responsible for very bright OHM emission. Finally, we provide an update on the predicted number of OH masers that may be found in AWES, and estimate the total number of OH masers that will be detected in each of the individual main and satellite OH 18 cm lines., 9 pages, 4 figures. Accepted for publication in A&A
- Published
- 2021
13. The best of both worlds: Combining LOFAR and Apertif to derive resolved radio spectral index images
- Author
-
Emanuela Orru, D. M. Lucero, H. J. A. Röttgering, M. J. Norden, G. M. Loose, A. M. Kutkin, Marisa Brienza, Tom Oosterloo, M. Ruiter, J. van Leeuwen, Dany Vohl, S. Damstra, Vanessa A. Moss, F. M. Maccagni, G. M. van Diepen, N. J. Vermaas, B. Hut, R. Kondapally, J. Ziemke, B. Adebahr, Martin J. Hardcastle, J. M. van der Hulst, R. I. J. Mostert, A. H. W. M. Coolen, N. Jurlin, Timothy W. Shimwell, W. J. G. de Blok, R. Morganti, Kelley M. Hess, Robert Schulz, Beatriz Mingo, Philip Best, L. C. Oostrum, Helga Denes, Elizabeth A. K. Adams, Stanislav S. Shabala, Isabella Prandoni, F. de Gasperin, Yogesh Maan, Astronomy, Kapteyn Astronomical Institute, Morganti, R., Oosterloo, T. A., Brienza, M., Jurlin, N., Prandoni, I., Orrù, E., Shabala, S. S., Adams, E. A. K., Adebahr, B., Best, P. N., Coolen, A. H. W. M., Damstra, S., de Blok, W. J. G., de Gasperin, F., Dénes, H., Hardcastle, M., Hess, K. M., Hut, B., Kondapally, R., Kutkin, A. M., Loose, G. M., Lucero, D. M., Maan, Y., Maccagni, F. M., Mingo, B., Moss, V. A., Mostert, R. I. J., Norden, M. J., Oostrum, L. C., Röttgering, H. J. A., Ruiter, M., Shimwell, T. W., Schulz, R., Vermaas, N. J., Vohl, D., van der Hulst, J. M., van Diepen, G. M., van Leeuwen, J., Ziemke, J., API Other Research (FNWI), and High Energy Astrophys. & Astropart. Phys (API, FNWI)
- Subjects
Physics ,radio continuum: galaxies ,Spectral index ,Supermassive black hole ,Active galactic nucleus ,010308 nuclear & particles physics ,Radio galaxy ,Astrophysics::High Energy Astrophysical Phenomena ,galaxies: active ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,LOFAR ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Astrophysics - Astrophysics of Galaxies ,Galaxy ,Spectral line ,Radio telescope ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,0103 physical sciences ,radio continuum: galaxie ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
Supermassive black holes at the centres of galaxies can cycle through periods of activity and quiescence. Characterising the duty cycle of active galactic nuclei is crucial for understanding the impact of the energy they release on the host galaxy. For radio AGN, this can be done by identifying dying (remnant) and restarted radio galaxies from their radio spectral properties. Using the combination of images at 1400 MHz produced by Apertif, the new phased-array feed receiver installed on the Westerbork Synthesis Radio Telescope, and images at 150 MHz provided by LOFAR, we have derived resolved spectral index images (at a resolution of ~15 arcsec) for all the sources within ~6 deg^2 area of the Lockman Hole region. We were able to select 15 extended radio sources with emission (partly or entirely) characterised by extremely steep spectral indices (steeper than 1.2). These objects represent radio sources in the remnant or the restarted phases of their life cycle. Our findings suggest this cycle to be relatively fast. They also show a variety of properties relevant for modelling the evolution of radio galaxies. For example, the restarted activity can occur while the remnant structure from a previous phase of activity is still visible. This provides constraints on the duration of the 'off' (dying) phase. In extended remnants with ultra-steep spectra at low frequencies, the activity likely stopped a few hundred megayears ago, and they correspond to the older tail of the age distribution of radio galaxies, in agreement with simulations of radio source evolution. We find remnant radio sources with a variety of structures (from double-lobed to amorphous), suggesting different types of progenitors. The present work sets the stage for exploiting low-frequency spectral index studies of extended sources by taking advantage of the large areas common to the LOFAR and the Apertif surveys., Accepted for publication in A&A. This paper is part of the 1st data release of the LoTSS Deep Fields. 17 pages, 10 figures
- Published
- 2021
- Full Text
- View/download PDF
14. Repeating fast radio bursts with WSRT/Apertif
- Author
-
Alessio Sclocco, J. M. van der Hulst, G. van Diepen, Jisk Attema, W. J. G. de Blok, R. H. van den Brink, D. W. Gardenier, N. J. Vermaas, S. ter Veen, Tom Oosterloo, Stefan J. Wijnholds, M. J. Norden, Henk Mulder, Liam Connor, B. Adebahr, G. M. Loose, D. M. Lucero, B. Hut, Emily Petroff, W. A. van Cappellen, J.-P. de Reijer, J. Ziemke, L. C. Oostrum, S. Damstra, Elizabeth A. K. Adams, Dany Vohl, A. H. W. M. Coolen, R. Smits, D. van der Schuur, Emanuela Orru, Á. Mika, Yogesh Maan, J. E. Bast, M. Ruiter, Vanessa A. Moss, J. van Leeuwen, B. S. Frank, Kelley M. Hess, R. Morganti, Marianna Ivashina, E. Kooistra, Samayra Straal, J. E. Hargreaves, Astronomy, Kapteyn Astronomical Institute, High Energy Astrophys. & Astropart. Phys (API, FNWI), and API Other Research (FNWI)
- Subjects
stars ,DEEP ,media_common.quotation_subject ,FOS: Physical sciences ,Context (language use) ,Astrophysics ,01 natural sciences ,radio continuum ,Radio telescope ,SEARCHES ,neutron ,Pulsar ,GIANT PULSES ,0103 physical sciences ,REPETITION ,010306 general physics ,010303 astronomy & astrophysics ,media_common ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,Spectral index ,Astronomy and Astrophysics ,Position angle ,Stars ,Space and Planetary Science ,Sky ,general ,pulsars ,Astrophysics - High Energy Astrophysical Phenomena ,EMISSION ,Energy (signal processing) - Abstract
Repeating fast radio bursts (FRBs) present excellent opportunities to identify FRB progenitors and host environments, as well as decipher the underlying emission mechanism. Detailed studies of repeating FRBs might also hold clues to the origin of FRBs as a population. We aim to detect the first two repeating FRBs: FRB 121102 (R1) and FRB 180814.J0422+73 (R2), and characterise their repeat statistics. We also want to significantly improve the sky localisation of R2. We use the Westerbork Synthesis Radio Telescope to conduct extensive follow-up of these two repeating FRBs. The new phased-array feed system, Apertif, allows covering the entire sky position uncertainty of R2 with fine spatial resolution in one pointing. We characterise the energy distribution and the clustering of detected R1 bursts. We detected 30 bursts from R1. Our measurements indicate a dispersion measure of 563.5(2) pc cm$^{-3}$, suggesting a significant increase in DM over the past few years. We place an upper limit of 8% on the linear polarisation fraction of the brightest burst. We did not detect any bursts from R2. A single power-law might not fit the R1 burst energy distribution across the full energy range or widely separated detections. Our observations provide improved constraints on the clustering of R1 bursts. Our stringent upper limits on the linear polarisation fraction imply a significant depolarisation, either intrinsic to the emission mechanism or caused by the intervening medium, at 1400 MHz that is not observed at higher frequencies. The non-detection of any bursts from R2 implies either a highly clustered nature of the bursts, a steep spectral index, or a combination of both. Alternatively, R2 has turned off completely, either permanently or for an extended period of time., 11 pages, 7 figures, submitted to A&A
- Published
- 2020
15. Extreme intra-hour variability of the radio source J1402+5347 discovered with Apertif
- Author
-
Kelley M. Hess, Henk Mulder, J. van Leeuwen, Tom Oosterloo, R. H. S. van den Brink, Stefan J. Wijnholds, M. J. Norden, J. Ziemke, Helga Denes, B. Adebahr, Yogesh Maan, B. Hut, L. C. Oostrum, R. Morganti, N. J. Vermaas, Elizabeth A. K. Adams, Vanessa A. Moss, A. M. Kutkin, Robert Schulz, J. M. van der Hulst, Emanuela Orru, D. M. Lucero, Harish Vedantham, W. J. G. de Blok, Dany Vohl, G. M. Loose, S. Damstra, A. R. Offringa, M. Ruiter, A. H. W. M. Coolen, Astronomy, Kapteyn Astronomical Institute, API Other Research (FNWI), and High Energy Astrophys. & Astropart. Phys (API, FNWI)
- Subjects
Astrophysics::High Energy Astrophysical Phenomena ,Milky Way ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,ISM: clouds ,01 natural sciences ,Apparent magnitude ,Angular diameter ,0103 physical sciences ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,Scintillation ,010308 nuclear & particles physics ,scattering ,Astronomy and Astrophysics ,Light curve ,Astrophysics - Astrophysics of Galaxies ,Galaxy ,Interstellar medium ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Astrophysics - High Energy Astrophysical Phenomena ,Radio wave - Abstract
The propagation of radio waves from distant compact radio sources through turbulent interstellar plasma in our Galaxy causes these sources to twinkle, a phenomenon called interstellar scintillation. Such scintillations are a unique probe of the micro-arcsecond structure of radio sources as well as of the sub-AU-scale structure of the Galactic interstellar medium. Weak scintillations (i.e. an intensity modulation of a few percent) on timescales of a few days or longer are commonly seen at centimetre wavelengths and are thought to result from the line-of-sight integrated turbulence in the interstellar plasma of the Milky Way. So far, only three sources were known that show more extreme variations, with modulations at the level of some dozen percent on timescales shorter than an hour. This requires propagation through nearby (d ~ 10^ 14K. }, Comment: Accepted for Astronomy and Astrophysics Letters
- Published
- 2020
- Full Text
- View/download PDF
16. Optimized trigger for ultra-high-energy cosmic-ray and neutrino observations with the low frequency radio array
- Author
-
Y. Tang, Harvey Butcher, M. Drost, J. W. Romein, M. Pandey-Pommier, J. Morawietz, A. Renting, A. de Jong, J. Eisloeffel, M. A. Garrett, A. Doorduin, S. Yattawatta, Maaijke Mevius, Rebecca McFadden, K. Dijkstra, A. G. Polatidis, J. Sluman, W. A. van Cappellen, A. van Duin, Jean-Mathias Grießmeier, M. P. van Haarlem, Roberto Pizzo, H. Weggemans, Ben Stappers, Stijn Buitink, P. Maat, M. Loose, M. J. Norden, W. Reich, P. Bennema, C. Broekema, R. Nijboer, E. van der Wal, J. D. Mol, H.-J. Stiepel, H. A. Holties, L.A. Horneffer, H. Meulman, Rene C. Vermeulen, Olaf Wucknitz, J. van Leeuwen, R. H. van de Brink, P. Donker, P. Gruppen, Martin Bell, K. Stuurwold, Joel N. Bregman, G. Bernadi, E. Kooistra, H. Munk, T. Grit, G. Kuper, J. E. Noordam, J.-P. de Reijer, W. N. Brouw, Luitje Koopmans, M. Avruch, G. van Diepen, Heino Falcke, M. de Vos, Mark J. Bentum, B. Ciardi, C. Mallary, Matthias Hoeft, P. Riemers, Michel Tagger, K. Singh, S. ter Veen, A. W. Gunst, H. Paas, J. Roosjen, Ashish Asgekar, M. Ruiter, C. Vogt, Philip Best, M. Gerbers, Michel Arts, P. Lambropoulos, J. E. van Zwieten, Lambert J.M. Nieuwenhuis, E. Mulder, A. Huijgen, G. Schoonderbeek, D. Kant, S. Damstra, C. W. James, M. Brueggen, Albert-Jan Boonstra, A. P. Schoenmakers, A. H. W. M. Coolen, M. Steinmetz, R. J. Dettmar, Stefan J. Wijnholds, Y. Koopman, Olaf Scholten, Oleg Smirnov, R. Overeem, Michael W. Wise, Jörg R. Hörandel, J. M. Anderson, H. Roettgering, A. van Ardenne, Vishambhar Pandey, High Energy Astrophys. & Astropart. Phys (API, FNWI), Netherlands Institute for Radio Astronomy (ASTRON), University of Groningen [Groningen], Max-Planck-Institut für Radioastronomie (MPIFR), University of Southampton, University of Edinburgh, Kapteyn Astronomical Institute [Groningen], Radboud University [Nijmegen], Research School of Astronomy and Astrophysics [Canberra] (RSAA), Australian National University (ANU), Department of Reproduction and Development, Erasmus University Rotterdam, Max Planck Institute for Astrophysics, Max-Planck-Gesellschaft, London Institute for Mathematical Sciences, Astronomisches Institut der Ruhr-Universität Bochum, Ruhr-Universität Bochum [Bochum], Leiden Observatory [Leiden], Universiteit Leiden, Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Thüringer Landessternwarte Tautenburg (TLS), Astronomical Institute Anton Pannekoek (AI PANNEKOEK), University of Amsterdam [Amsterdam] (UvA), DLR Institute of Aerospace Medicine, Deutsches Zentrum für Luft- und Raumfahrt [Köln] (DLR), Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Jodrell Bank Centre for Astrophysics (JBCA), University of Manchester [Manchester], Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH / Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures (DSMZ), University of Reading (UOR), Institute for Mathematics, Astrophysics and Particle Physics (IMAPP), Radboud university [Nijmegen], Universiteit Leiden [Leiden], École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), KVI - Center for Advanced Radiation Technology, Astronomy, and Kapteyn Astronomical Institute
- Subjects
FLUX ,Nuclear and High Energy Physics ,Lunar radio detection ,TELESCOPE ,Astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Low frequency ,UHE NEUTRINOS ,01 natural sciences ,7. Clean energy ,law.invention ,Radio telescope ,Telescope ,LIMITS ,Frequency filter detection ,law ,SEARCH ,0103 physical sciences ,Ultra-high-energy cosmic ray ,010306 general physics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,DETECTOR ,010303 astronomy & astrophysics ,Instrumentation ,Ultra-high energy neutrinos ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,SPECTRUM ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,LOFAR ,Ultra-high energy cosmic rays ,[SDU]Sciences of the Universe [physics] ,ComputingMethodologies_DOCUMENTANDTEXTPROCESSING ,Neutrino ,Nano-second pulse detection ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,EMISSION ,Energy (signal processing) - Abstract
When an ultra-high energy neutrino or cosmic ray strikes the Lunar surface a radio-frequency pulse is emitted. We plan to use the LOFAR radio telescope to detect these pulses. In this work we propose an efficient trigger implementation for LOFAR optimized for the observation of short radio pulses., Comment: Submitted to Nuclear Instruments and Methods in Physics Research Section A
- Published
- 2012
- Full Text
- View/download PDF
17. Detecting cosmic rays with the LOFAR radio telescope
- Author
-
P. Maat, M. J. Norden, J. M. Anderson, N. J. Vermaas, E. de Geus, Sarod Yatawatta, Stefan J. Wijnholds, A. de Jong, J. D. Mol, Ben Stappers, C. Vogt, Philip Best, Pim Schellart, Stijn Buitink, D. McKay-Bukowski, M. Pandey-Pommier, Joel N. Bregman, H. Munk, Marcus Brüggen, Matthias Hoeft, P. Bennema, Jason W. T. Hessels, Charlotte Sobey, Benedetta Ciardi, M. de Vos, R.V. van Nieuwpoort, J. E. Enriquez, A. Alexov, R. J. van Weeren, S. Duscha, L. Bähren, Ph. Zarka, Aris Karastergiou, Gottfried Mann, Heino Falcke, Rene C. Vermeulen, V. I. Kondratiev, A. Horneffer, Michael W. Wise, Gianni Bernardi, R. Pizzo, D. D. Mulcahy, M. Kuniyoshi, Giulia Macario, Jörg R. Hörandel, Michael Kramer, Ralph A. M. J. Wijers, Richard Fallows, John McKean, Arthur Corstanje, Cyril Tasse, J. W. Broderick, A. H. W. M. Coolen, A. Nelles, George Heald, A. Zensus, A. Schoenmakers, John W. Romein, Michiel A. Brentjens, John D. Swinbank, C. Toribio, Jean-Mathias Grießmeier, Maria Krause, M. A. Garrett, Olaf Scholten, Dominik J. Schwarz, Y. Tang, M. van den Akker, T. E. Hassall, Oleg Smirnov, H. Paas, T. Grit, James Miller-Jones, R. Nijboer, Matthias Steinmetz, Marco Iacobelli, J. P. Hamaker, Emanuela Orru, C. W. James, J. van Leeuwen, J. Kohler, Chiara Ferrari, Christian Vocks, Jochen Eislöffel, Mark J. Bentum, Gerard H. Kuper, R. Overeem, A. G. Polatidis, I. M. Avruch, A. Renting, F. de Gasperin, W. Frieswijk, S. ter Veen, Martin Bell, E. Juette, Wouter Klijn, M. Mevius, Sera Markoff, H. A. Holties, Olaf Wucknitz, Rainer Beck, J. Sluman, H. J. A. Röttgering, Satyendra Thoudam, F. Breitling, High Energy Astrophys. & Astropart. Phys (API, FNWI), Radboud University [Nijmegen], SETI Institute, Netherlands Institute for Radio Astronomy (ASTRON), Max-Planck-Institut für Radioastronomie (MPIFR), Max Planck Institute for Astrophysics, Max-Planck-Gesellschaft, Erlangen Centre for Astroparticle Physics (ECAP), Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Max-Planck-Institut für Extraterrestrische Physik (MPE), Kernfysisch Versneller Instituut, Univ. of Groningen (KVI), University of Groningen [Groningen], Institute for Mathematics, Astrophysics and Particle Physics (IMAPP), SRON Netherlands Institute for Space Research (SRON), Astronomical Institute Anton Pannekoek (AI PANNEKOEK), University of Amsterdam [Amsterdam] (UvA), Laboratoire de Chimie Physique Moléculaire (LCPM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Harvard-Smithsonian Center for Astrophysics (CfA), Harvard University-Smithsonian Institution, University of Edinburgh, Leibniz-Institut für Astrophysik Potsdam (AIP), University of Southampton, Jacobs University [Bremen], London Institute for Mathematical Sciences, Hamburger Sternwarte/Hamburg Observatory, Universität Hamburg (UHH), Medstar Research Institute, Thüringer Landessternwarte Tautenburg (TLS), Institute of Mathematical and Physical Sciences, Joseph Louis LAGRANGE (LAGRANGE), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Leiden Observatory [Leiden], Universiteit Leiden, Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Jodrell Bank Centre for Astrophysics, University of Manchester [Manchester], Ruhr-Universität Bochum [Bochum], Oxford Astrophysics, University of Oxford, Karlsruhe Institute of Technology (KIT), University of Oulu, Center for Agricultural Research in Suriname CELOS and Department of Biology, Anton de Kom Universiteit van Suriname - Anton de Kom University of Suriname [Paramaribo] (UVS), Center for Information Technology CIT, Université de Groningen, Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Interactions Son Musique Mouvement, Sciences et Technologies de la Musique et du Son (STMS), Institut de Recherche et Coordination Acoustique/Musique (IRCAM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche et Coordination Acoustique/Musique (IRCAM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Rhodes University, Grahamstown, SKA South Africa, Ska South Africa, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Argelander-Institut für Astronomie (AlfA), Rheinische Friedrich-Wilhelms-Universität Bonn, Kapteyn Astronomical Institute [Groningen], ANR-09-JCJC-0001,OPALES(2009), European Project: 227610,EC:FP7:ERC,ERC-2008-AdG,LOFAR-AUGER(2009), Astronomy, Research unit Astroparticle Physics, Radboud university [Nijmegen], Harvard University [Cambridge]-Smithsonian Institution, Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Universiteit Leiden [Leiden], University of Oxford [Oxford], École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Université Nice Sophia Antipolis (... - 2019) (UNS), Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), PSL Research University (PSL)-PSL Research University (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Anton de Kom University of Suriname, Université Pierre et Marie Curie - Paris 6 (UPMC)-IRCAM-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-IRCAM-Centre National de la Recherche Scientifique (CNRS), Rhodes University, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), and ANR-09-JCJC-0001,OPALES,nOn-thermal Processes in gALaxy cluStErs(2009)
- Subjects
EWI-24497 ,Astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Cosmic ray ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Low frequency ,EXTENSIVE AIR-SHOWERS ,01 natural sciences ,Electromagnetic interference ,Radio telescope ,CODALEMA ,0103 physical sciences ,instrumentation: interferometers ,010303 astronomy & astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,010308 nuclear & particles physics ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy and Astrophysics ,LOFAR ,METIS-302713 ,methods: data analysis ,SIMULATIONS ,PULSES ,Interferometry ,Space and Planetary Science ,astroparticle physics ,[SDU]Sciences of the Universe [physics] ,ComputingMethodologies_DOCUMENTANDTEXTPROCESSING ,ARRAY ,astroparticle physics – methods: data analysis – instrumentation: interferometers ,Antenna (radio) ,EMISSION ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,Energy (signal processing) ,IR-89518 - Abstract
International audience; The low frequency array (LOFAR), is the first radio telescope designed with the capability to measure radio emission from cosmic-ray induced air showers in parallel with interferometric observations. In the first $\sim 2\,\mathrm{years}$ of observing, 405 cosmic-ray events in the energy range of $10^{16} - 10^{18}\,\mathrm{eV}$ have been detected in the band from $30 - 80\,\mathrm{MHz}$. Each of these air showers is registered with up to $\sim1000$ independent antennas resulting in measurements of the radio emission with unprecedented detail. This article describes the dataset, as well as the analysis pipeline, and serves as a reference for future papers based on these data. All steps necessary to achieve a full reconstruction of the electric field at every antenna position are explained, including removal of radio frequency interference, correcting for the antenna response and identification of the pulsed signal.
- Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.