1. Roadmap to fault tolerant quantum computation using topological qubit arrays
- Author
-
Aasen, David, Aghaee, Morteza, Alam, Zulfi, Andrzejczuk, Mariusz, Antipov, Andrey, Astafev, Mikhail, Avilovas, Lukas, Barzegar, Amin, Bauer, Bela, Becker, Jonathan, Bello-Rivas, Juan M., Bhaskar, Umesh, Bocharov, Alex, Boddapati, Srini, Bohn, David, Bommer, Jouri, Bonderson, Parsa, Borovsky, Jan, Bourdet, Leo, Boutin, Samuel, Brown, Tom, Campbell, Gary, Casparis, Lucas, Chakravarthi, Srivatsa, Chao, Rui, Chapman, Benjamin J., Chatoor, Sohail, Christensen, Anna Wulff, Codd, Patrick, Cole, William, Cooper, Paul, Corsetti, Fabiano, Cui, Ajuan, van Dam, Wim, Dandachi, Tareq El, Daraeizadeh, Sahar, Dumitrascu, Adrian, Ekefjärd, Andreas, Fallahi, Saeed, Galletti, Luca, Gardner, Geoff, Gatta, Raghu, Gavranovic, Haris, Goulding, Michael, Govender, Deshan, Griggio, Flavio, Grigoryan, Ruben, Grijalva, Sebastian, Gronin, Sergei, Gukelberger, Jan, Haah, Jeongwan, Hamdast, Marzie, Hansen, Esben Bork, Hastings, Matthew, Heedt, Sebastian, Ho, Samantha, Hogaboam, Justin, Holgaard, Laurens, Van Hoogdalem, Kevin, Indrapiromkul, Jinnapat, Ingerslev, Henrik, Ivancevic, Lovro, Jablonski, Sarah, Jensen, Thomas, Jhoja, Jaspreet, Jones, Jeffrey, Kalashnikov, Kostya, Kallaher, Ray, Kalra, Rachpon, Karimi, Farhad, Karzig, Torsten, Kimes, Seth, Kliuchnikov, Vadym, Kloster, Maren Elisabeth, Knapp, Christina, Knee, Derek, Koski, Jonne, Kostamo, Pasi, Kuesel, Jamie, Lackey, Brad, Laeven, Tom, Lai, Jeffrey, de Lange, Gijs, Larsen, Thorvald, Lee, Jason, Lee, Kyunghoon, Leum, Grant, Li, Kongyi, Lindemann, Tyler, Lucas, Marijn, Lutchyn, Roman, Madsen, Morten Hannibal, Madulid, Nash, Manfra, Michael, Markussen, Signe Brynold, Martinez, Esteban, Mattila, Marco, Mattinson, Jake, McNeil, Robert, Mei, Antonio Rodolph, Mishmash, Ryan V., Mohandas, Gopakumar, Mollgaard, Christian, de Moor, Michiel, Morgan, Trevor, Moussa, George, Narla, Anirudh, Nayak, Chetan, Nielsen, Jens Hedegaard, Nielsen, William Hvidtfelt Padkær, Nolet, Frédéric, Nystrom, Mike, O'Farrell, Eoin, Otani, Keita, Paetznick, Adam, Papon, Camille, Paz, Andres, Petersson, Karl, Petit, Luca, Pikulin, Dima, Pons, Diego Olivier Fernandez, Quinn, Sam, Rajpalke, Mohana, Ramirez, Alejandro Alcaraz, Rasmussen, Katrine, Razmadze, David, Reichardt, Ben, Ren, Yuan, Reneris, Ken, Riccomini, Roy, Sadovskyy, Ivan, Sainiemi, Lauri, Saldaña, Juan Carlos Estrada, Sanlorenzo, Irene, Schaal, Simon, Schmidgall, Emma, Sfiligoj, Cristina, da Silva, Marcus P., Sinha, Sarat, Soeken, Mathias, Sohr, Patrick, Stankevic, Tomas, Stek, Lieuwe, Strøm-Hansen, Patrick, Stuppard, Eric, Sundaram, Aarthi, Suominen, Henri, Suter, Judith, Suzuki, Satoshi, Svore, Krysta, Teicher, Sam, Thiyagarajah, Nivetha, Tholapi, Raj, Thomas, Mason, Tom, Dennis, Toomey, Emily, Tracy, Josh, Troyer, Matthias, Turley, Michelle, Turner, Matthew D., Upadhyay, Shivendra, Urban, Ivan, Vaschillo, Alexander, Viazmitinov, Dmitrii, Vogel, Dominik, Wang, Zhenghan, Watson, John, Webster, Alex, Weston, Joseph, Williamson, Timothy, Winkler, Georg W., van Woerkom, David J., Wütz, Brian Paquelet, Yang, Chung Kai, Yu, Richard, Yucelen, Emrah, Zamorano, Jesús Herranz, Zeisel, Roland, Zheng, Guoji, Zilke, Justin, and Zimmerman, Andrew
- Subjects
Quantum Physics ,Condensed Matter - Superconductivity - Abstract
We describe a concrete device roadmap towards a fault-tolerant quantum computing architecture based on noise-resilient, topologically protected Majorana-based qubits. Our roadmap encompasses four generations of devices: a single-qubit device that enables a measurement-based qubit benchmarking protocol; a two-qubit device that uses measurement-based braiding to perform single-qubit Clifford operations; an eight-qubit device that can be used to show an improvement of a two-qubit operation when performed on logical qubits rather than directly on physical qubits; and a topological qubit array supporting lattice surgery demonstrations on two logical qubits. Devices that enable this path require a superconductor-semiconductor heterostructure that supports a topological phase, quantum dots and coupling between those quantum dots that can create the appropriate loops for interferometric measurements, and a microwave readout system that can perform fast, low-error single-shot measurements. We describe the key design components of these qubit devices, along with the associated protocols for demonstrations of single-qubit benchmarking, Clifford gate execution, quantum error detection, and quantum error correction, which differ greatly from those in more conventional qubits. Finally, we comment on implications and advantages of this architecture for utility-scale quantum computation., Comment: 11+6 pages, 8+5 figures
- Published
- 2025