1. Axial and triaxial degrees of freedom in 72Zn
- Author
-
S. Hellgartner, D. Mücher, K. Wimmer, V. Bildstein, J.L. Egido, R. Gernhäuser, R. Krücken, A.K. Nowak, M. Zielińska, C. Bauer, M.L.L. Benito, S. Bottoni, H. De Witte, J. Elseviers, D. Fedorov, F. Flavigny, A. Illana, M. Klintefjord, T. Kröll, R. Lutter, B. Marsh, R. Orlandi, J. Pakarinen, R. Raabe, E. Rapisarda, S. Reichert, P. Reiter, M. Scheck, M. Seidlitz, B. Siebeck, E. Siesling, T. Steinbach, T. Stora, M. Vermeulen, D. Voulot, N. Warr, and F.J.C. Wenander
- Subjects
Multiple Coulomb excitation ,72Zn ,N=40 sub-shell closure ,Triaxiality ,Physics ,QC1-999 - Abstract
The unstable N=42 nucleus 72Zn has been studied using multiple safe Coulomb excitation in inverse kinematics. The experiment was performed at the REX-ISOLDE facility at CERN making first use of the silicon detector array C-REX in combination with the γ-ray spectrometer Miniball. The high angular coverage of C-REX allowed to determine the reduced transition strengths for the decay of the yrast 01+, 21+ and 41+ as well as of the 02+ and 22+ states in 72Zn. The quadrupole moments of the 21+, 41+ and 22+ states were extracted. Using model independent quadrupole invariants, the ground state of 72Zn was found to have an average deformation in the γ degree of freedom close to maximum triaxiality. In comparison to experimental data in zinc isotopes with N
- Published
- 2023
- Full Text
- View/download PDF