Submitted by Helena Bejio (helena.bejio@unioeste.br) on 2022-09-13T13:37:58Z No. of bitstreams: 2 Juliano_Zimmermann_2022.pdf: 5296888 bytes, checksum: 3c391a6df11af7ec5e17b42f95905023 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Made available in DSpace on 2022-09-13T13:37:58Z (GMT). No. of bitstreams: 2 Juliano_Zimmermann_2022.pdf: 5296888 bytes, checksum: 3c391a6df11af7ec5e17b42f95905023 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2022-05-27 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES Pesticides are essential inputs that drive agricultural production worldwide, but their incorrect use has caused an increase in their concentrations in water resources. As water treatment systems for human supply are generally not designed to remove pesticides, their accumulation in sites intended for human supply can be considered a public health problem. In this scenario, the adsorption process by activated carbons is one of the main advanced treatments applied to water contaminated by such hazardous substances. Such technology becomes even more attractive when considering waste materials for water remediation. Therefore, this master's dissertation aims to show that it can produce activated carbons with excellent physicochemical and morphological characteristics from tobacco residues. The tobacco studied comes from cigarettes seized by the Federal Revenue Service, which was used exclusively in the production of activated charcoal intended for laboratory studies of remediation of water contaminated with acephate and thiamethoxam through insecticides adsorption processes. Activated carbon production studies were optimized under different temperatures (800 and 900 ºC) and mass ratios of chemical agent (potassium hydroxide, or KOH) and tobacco (m/m ratio of 4/1 and 5/1), resulting in the following materials tested: CA800-4-KOH (example: activated carbon at 800 ºC, in the ratio 4/1 m/m KOH/tobacco), CA900-4-KOH and CA900-5- KOH. It should be noted that the definition of the conditions that resulted in the aforementioned activated carbons resulted from an exhaustive study summarized in ANNEX 1. After the activated carbons were developed, their characterization was carried out using chemical desorption in water, point of zero charge (pHPZC), infrared spectra (FTIR), surface area, pore diameter, and volume, in addition to adsorption tests, through studies of kinetics, equilibrium, and thermodynamics of adsorption of the pesticides acephate and thiamethoxam. Pseudo-first, pseudo-second order, Elovich, intraparticle diffusion, Langmuir, Freundlich, Sips, Temkin, Liu, Toth, Redlich- Peterson and Khan empirical models were used to investigate the nature of the adsorption process. Furthermore, the isotherms constructed at different temperatures allowed the estimation of thermodynamic parameters inherent to the pesticide adsorption process. According to the desorption results in water, the activated carbons developed do not release heavy metals or other substances into the liquid medium. In addition, hydroxyl, phenolic, aromatic, carboxylic, and carbonate surface functional groups are observed, which can act in the various adsorption processes of contaminants. The modifying agent (KOH) and the heat treatment resulted in pHPZC changes, with the following values being observed: 6.9 for CA800-4-KOH, 9.41 for CA900-4-KOH, and 9.41 for CA900- 5-KOH. The results indicated that CAs have a high surface area (> 2000 m2 g-1), with a maximum of 3294 m2 g-1 for CA900-4-KOH. The pseudo-first and pseudo-second order kinetic adsorption models fit the experimental data, with values of qe (exp.) and qe (calc.) very close. For both pesticides, the adsorption process was fast, with a high adsorption rate in the initial 5 minutes. The adsorption rate of acephate, estimated by k1 (min-1), assumes the following order CA 800-4-KOH (18.85) > CA 900- 5-KOH (11.35) > CA 900-4-KOH (10.70), with values of k2 (g mg-1 min-1) extrapolated, suggesting physisorption. The adsorption rate of thiamethoxam, estimated by k1 (min-1), followed the order CA900-5-KOH (20.500) > CA900-4-KOH (19.736) > CA800-4- KOH (18.436), with good fits (R2-adj), corroborating with values obtained in thermodynamics, indicating physical adsorption. As for k2 (g mg-1 min-1) CA900-4- KOH (0.679) > CA900-5-KOH (0.677) > CA800-4-KOH (0.644). The adsorption equilibrium studies showed qmax adsorption order (mg g-1) following: CA900-5-KOH (56.372) > CA800-4-KOH (40.355) > CA900-4-KOH (34.389). The KLangmuir constant indicated that all materials showed low acephate-CA interaction, a fact that corroborates bTemkin and Liu, indicating low heat of adsorption and preferred affinity of acephate for certain active sites of CA, which may be attributed to the hydrophilic character of the pesticide (KOW = -0.85), which may explain the low removal rate. The nSips parameter indicates homogeneous and monolayer adsorption by CA800-4-KOH, linked to the Langmuir model, while for CA900-4-KOH and CA900-5-KOH, the model returns to Freundlich, suggesting heterogeneity and multilayer formation. The maximum adsorption capacity of thiamethoxam followed the order: CA900-4-KOH (150.5 mg g- 1) > CA900-5-KOH (117.3 mg g-1) > CA800-4-KOH (99.2 mg g-1), with removal rate approaching 100 %: CA900-5-KOH (99.2 %) > CA900-4-KOH (99.0 %) > CA800-4- KOH (98.3 %). The Freundlich model was more accurate than the other models in describing the adsorption process due to the high R2 and low variance, suggesting a multilayer adsorption process on an energetically heterogeneous CA surface. There is a general tendency for the isotherms studies to reduce the constant values and the adsorbed amount due to temperature rise. For thermodynamics, CA800-4-KOH and CA900-4- KOH showed system order (∆Sº < 0), and CA900-5-KOH showed higher affinity between the material and the acephate solution (∆Sº = 48.8 J mol-1), which corroborated the highest rate of pesticide removal by the material (qmax). The thiamethoxam adsorption process was spontaneous (ΔGº < 0), exothermic with a decrease in adsorption capacity with increasing temperature, in addition to corroborating the kinetic results indicating physisorption (ΔHº < 0). The positive values of ΔSº are related to the sorption of thiamethoxam, compressing and disturbing the surface of the CAs, being the force responsible for the process. In this way, it can be said that the uses of different activations for the activated carbons produced from tobacco were efficient in the removal of pesticides from water, mainly thiamethoxam, reaching almost 100 % of removal, evidencing an excellent alternative in the remediation of contaminated water, in addition to enabling the environmentally appropriate use of tobacco from seized cigarettes. Os pesticidas constituem-se de insumos extremamente importantes que impulsionam a produção agrícola em todo o mundo, porém seu uso incorreto vem causando o aumento de suas concentrações nos recursos hídricos. Como geralmente os sistemas de tratamento de água para abastecimento humano não são desenhados para a remoção de pesticidas, seu acúmulo em sítios destinados ao abastecimento humano pode ser considerado um problema de saúde pública. Neste cenário, o processo de adsorção por carvões ativados é um dos principais tratamentos avançados aplicados em águas contaminadas por tais substâncias perigosas. Essa tecnologia se torna ainda mais atrativa quando se considera o uso de materiais residuais para a remediação de águas. Considerando o supracitado, o objetivo desta pesquisa foi mostrar que a partir de resíduos de tabaco é possível produzir carvões ativados de excelentes características físico-químicas e morfológicas. O tabaco estudado é proveniente de cigarros apreendidos pela Receita Federal, o qual foi empregado exclusivamente na produção de carvão ativado destinado a estudos laboratoriais de remediação de águas contaminadas com os inseticidas acefato e tiametoxam por meio de processos de adsorção. Os estudos de produção de carvões ativados foram otimizados sob diferentes temperaturas (800 e 900 ºC) e proporções de massa de agente químico (hidróxido de potássio, ou KOH) e tabaco (relação m/m de 4/1 e 5/1), resultando nos seguintes materiais testados: CA800- 4-KOH (a exemplo: carvão ativado a 800 ºC, na proporção 4/1 m/m de KOH/tabaco), CA900-4-KOH e CA900-5-KOH. Salienta-se que a definição das condições que resultaram nos carvões ativados supracitados foi resultado de exaustivo estudo cujos resultados estão sumarizados no ANEXO 1. Após desenvolvidos os carvões ativados, foi realizada a sua caracterização por meio de dessorção química em água, ponto de carga zero (pHPCZ), espectroscopia de IV (FTIR), área de superfície, diâmetro e volume de poros, além de testes de adsorção, por meio de estudos de cinética, equilíbrio e termodinâmica de adsorção dos pesticidas acefato e tiametoxam. Foram usados os modelos empíricos de pseudo-primera ordem, pseudo-segunda ordem, Elovich, difusão intrapartícula, Langmuir, Freundlich, Sips, Temkin, Liu, Toth, Redlich-Peterson e Khan na investigação da natureza do processo de adsorção. Além disso, as isotermas construídas em diferentes temperaturas permitiram a estimativa de parâmetros termodinâmicos inerentes ao processo de adsorção dos pesticidas. De acordo com os resultados de dessorção em água, os carvões ativados desenvolvidos não liberam metais pesados ou outras substâncias no meio líquido. Além disso, observa-se a presença de grupos funcionais de superfície hidroxila, fenólico, aromático, carboxílico e grupo carbonato, que atuam nos diversos processos de adsorção de pesticidas. O agente modificante (KOH) somado ao tratamento térmico resultou em alteração do pHPCZ dos adsorventes, sendo observados os seguintes valores: 6,9 para CA800-4-KOH, 9,41 para CA900-4-KOH e 9,41 para CA900-5-KOH. Os resultados indicaram que os CAs apresentam elevada área superficial (> 2000 m2 g-1), com máxima de 3294 m2 g-1 para CA900-4-KOH. Os modelos cinéticos de adsorção de pseudo-primeira e pseudo- segunda ordem se ajustaram aos dados experimentais, com valores de qe (exp.) e qe (calc.) muito próximos. Para ambos os pesticidas o processo de adsorção foi rápido, apresentando alta taxa de adsorção já nos 5 minutos iniciais. A velocidade de adsorção de acefato, estimada pela constante de pseudo-primeira ordem, k1 (min-1) assume a seguinte ordem CA 800-4-KOH (18,85) > CA 900-5-KOH (11,35) > CA 900-4-KOH (10,70), com valores da constante de pseudo-segunda ordem, k2 (g mg-1 min-1) extrapolados, sugerindo fisissorção. A velocidade de adsorção de tiametoxam, estimada por k1 (min-1) seguiu a ordem CA900-5-KOH (20,500) > CA900-4-KOH (19,736) > CA800-4-KOH (18,436), com bons ajustes (R2-adj), corroborando com valores obtidos na termodinâmica, indicando adsorção física. Já para pseundo-segunda ordem, a constante k2 (g mg-1 min-1) seguiu CA900-4-KOH (0,679) > CA900-5-KOH (0,677) > CA800-4-KOH (0,644). Os estudos de equilíbrio de adsorção apresentaram ordem de adsorção qmax (mg g-1) seguindo: CA900-5-KOH (56,372) > CA800-4-KOH (40,355) > CA900-4-KOH (34,389). A constante KLangmuir indicou que todos os materiais apresentaram interação entre acefato-CA baixa, fato que corrobora bTemkin e Liu, indicando baixo calor de adsorção e afinidade preferida do acefato por certos sítios ativos do CA, que pode estar atribuída a característica hidrofílica do pesticida (KOW = - 0,85). O parâmetro de nSips indica adsorção homogênea e em monocamada por CA800- 4-KOH, ligado ao modelo de Langmuir, já para CA900-4-KOH e CA900-5-KOH o modelo retorna para Freundlich, sugerindo heterogeneidade e formação de multicamadas. A capacidade máxima de adsorção de tiametoxam obedeceu a ordem: CA900-4-KOH (150,5 mg g-1) > CA900-5-KOH (117,3 mg g-1) > CA800-4-KOH (99,2 mg g-1), com taxa de remoção beirando 100%: CA900-5-KOH (99,2 %) > CA900-4- KOH (99,0 %) > CA800-4-KOH (98,3 %). Neste estudo, o modelo de Freundlich se apresentou mais preciso que os outros modelos na descrição do processo de adsorção, devido ao alto R2 e baixa variância, sugerindo um processo de adsorção em multicamadas em uma superfície energeticamente heterogênea do CA. Analisando as isotermas para ambos os pesticidas em diferentes temperaturas, há uma tendencia geral de redução da capacidade de adsorção em função do aumento da temperatura, além de apresentarem redução da quantidade adsorvida à medida que a concentração inicial aumenta. Nos estudos de termodinâmica de adsorção, CA800-4-KOH e CA900-4-KOH apresentaram ordem do sistema (∆Sº < 0) e CA900-5-KOH apresentou maior afinidade entre o material e a solução de acefato (∆Sº = 48,8 J mol-1), fato que corroborou com a maior taxa de remoção do pesticida pelo material (qmax). O processo de adsorção de tiametoxam se mostrou espontânea (ΔGº < 0), exotérmica com diminuição de capacidade adsorção com o aumento da temperatura, além de corrobar com os resultados de cinética indicando fisissorção (ΔHº < 0). Os valores de positivos de ΔSº estam relacionados com a sorção de tiametoxam, comprimindo e perturbando a superfície dos CAs, sendo esta a força responsável pelo processo. Desta maneira, pode-se afirmar que, os usos das diferentes ativações para os carvões ativados produzidos a partir do tabaco foram eficientes na remoção de pesticidas de águas, principalmente tiametoxam, chegando a quase 100 % de remoção, evidenciando uma excelente alternativa na remediação de águas contaminadas, além de possibilitar o uso ambientalmente adequado do tabaco oriundo de cigarros apreendidos.