1. A soft nearest-neighbor framework for continual semi-supervised learning
- Author
-
Kang, Zhiqi, Fini, Enrico, Nabi, Moin, Ricci, Elisa, Alahari, Karteek, Apprentissage de modèles à partir de données massives (Thoth), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Kuntzmann (LJK), Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), University of Trento [Trento], SAP AI Research (SAP AI ), Fondazione Bruno Kessler [Trento, Italy] (FBK), ANR-18-CE23-0011, ANR-18-CE23-0011,AVENUE,Réseau de mémoire visuelle pour l'interprétation de scènes(2018), Team, THOTH, and Réseau de mémoire visuelle pour l'interprétation de scènes - - AVENUE2018 - ANR-18-CE23-0011 - AAPG2018 - VALID
- Subjects
ACM: I.: Computing Methodologies/I.2: ARTIFICIAL INTELLIGENCE ,FOS: Computer and information sciences ,Computer Science - Machine Learning ,[INFO.INFO-CV] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] ,Image classification ,ACM: I.: Computing Methodologies/I.4: IMAGE PROCESSING AND COMPUTER VISION ,Computer Vision and Pattern Recognition (cs.CV) ,Semi-supervised learning ,Computer Science - Computer Vision and Pattern Recognition ,[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] ,Continual learning ,Machine Learning (cs.LG) - Abstract
Despite significant advances, the performance of state-of-the-art continual learning approaches hinges on the unrealistic scenario of fully labeled data. In this paper, we tackle this challenge and propose an approach for continual semi-supervised learning--a setting where not all the data samples are labeled. A primary issue in this scenario is the model forgetting representations of unlabeled data and overfitting the labeled samples. We leverage the power of nearest-neighbor classifiers to nonlinearly partition the feature space and flexibly model the underlying data distribution thanks to its non-parametric nature. This enables the model to learn a strong representation for the current task, and distill relevant information from previous tasks. We perform a thorough experimental evaluation and show that our method outperforms all the existing approaches by large margins, setting a solid state of the art on the continual semi-supervised learning paradigm. For example, on CIFAR-100 we surpass several others even when using at least 30 times less supervision (0.8% vs. 25% of annotations). Finally, our method works well on both low and high resolution images and scales seamlessly to more complex datasets such as ImageNet-100. The code is publicly available on https://github.com/kangzhiq/NNCSL, 13 pages
- Published
- 2022