1. Regularization estimates and hydrodynamical limit for the Landau equation
- Author
-
Carrapatoso, Kleber, Rachid, Mohamad, Tristani, Isabelle, Centre de Mathématiques Laurent Schwartz (CMLS), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Laboratoire de Mathématiques Jean Leray (LMJL), Centre National de la Recherche Scientifique (CNRS)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN), Département de Mathématiques et Applications - ENS Paris (DMA), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), ANR-17-CE40-0030,EFI,Entropie, flots, inégalités(2017), ANR-19-CE40-0004,SALVE,Singularités dans des limites asymptotiques d'équations de Vlasov(2019), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
- Subjects
Physics::Fluid Dynamics ,Mathematics - Analysis of PDEs ,Applied Mathematics ,General Mathematics ,FOS: Mathematics ,Mathematics::Analysis of PDEs ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Analysis of PDEs (math.AP) - Abstract
In this paper, we study the Landau equation under the Navier-Stokes scaling in the torus for hard and moderately soft potentials. More precisely, we investigate the Cauchy theory in a perturbative framework and establish some new short time regularization estimates for our rescaled nonlinear Landau equation. These estimates are quantified in time and optimal, indeed, we obtain the instantaneous expected anisotropic gain of regularity (see [53] for the corresponding hypoelliptic estimates on the linearized Landau collision operator). Moreover, the estimates giving the gain of regularity in the velocity variable are uniform in the Knudsen number. Intertwining these new estimates on the Landau equation with estimates on the Navier-Stokes-Fourier system, we are then able to obtain a result of strong convergence towards this fluid system.
- Published
- 2022
- Full Text
- View/download PDF