1. Air pollution exposure increases ABCB1 and ASCT1 transporter levels in mouse cortex.
- Author
-
Puris E, Saveleva L, Górová V, Vartiainen P, Kortelainen M, Lamberg H, Sippula O, Malm T, Jalava PI, Auriola S, Fricker G, and Kanninen KM
- Subjects
- Animals, Mice, Particle Size, Air Pollutants toxicity, Air Pollutants analysis, Particulate Matter toxicity, Particulate Matter analysis, Amino Acid Transport System ASC analysis, ATP Binding Cassette Transporter, Subfamily B, Member 1 analysis, Frontal Lobe drug effects, Frontal Lobe metabolism
- Abstract
Membrane transporters are important for maintaining brain homeostasis by regulating the passage of solutes into, out of, and within the brain. Growing evidence suggests neurotoxic effects of air pollution exposure and its contribution to neurodegenerative disorders, including Alzheimer's disease (AD), yet limited knowledge is available on the exact cellular impacts of exposure. This study investigates how exposure to ubiquitous solid components of air pollution, ultrafine particles (UFPs), influence brain homeostasis by affecting protein levels of membrane transporters. Membrane transporters were quantified and compared in brain cortical samples of wild-type and the 5xFAD mouse model of AD in response to subacute exposure to inhaled UFPs. The cortical ASCT1 and ABCB1 transporter levels were elevated in wild-type and 5xFAD mice subjected to a 2-week UFP exposure paradigm, suggesting impairment of brain homeostatic mechanisms. This study provides new insight on the molecular mechanisms underlying adverse effects of air pollution on the brain., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF