15 results on '"Abante J"'
Search Results
2. Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen
- Author
-
Menden M, Wang D, Mason M, Szalai B, Bulusu K, Guan Y, Yu T, Kang J, Jeon M, Wolfinger R, Nguyen T, Zaslavskiy M, Jang I, Ghazoui Z, Ahsen M, Vogel R, Neto E, Norman T, Tang E, Garnett M, Di Veroli G, Fawell S, Stolovitzky G, Guinney J, Dry J, Saez-Rodriguez J, Abante J, Abecassis B, Aben N, Aghamirzaie D, Aittokallio T, Akhtari F, Al-lazikani B, Alam T, Allam A, Allen C, de Almeida M, Altarawy D, Alves V, Amadoz A, Anchang B, Antolin A, Ash J, Aznar V, Ba-alawi W, Bagheri M, Bajic V, Ball G, Ballester P, Baptista D, Bare C, Bateson M, Bender A, Bertrand D, Wijayawardena B, Boroevich K, Bosdriesz E, Bougouffa S, Bounova G, Brouwer T, Bryant B, Calaza M, Calderone A, Calza S, Capuzzi S, Carbonell-Caballero J, Carlin D, Carter H, Castagnoli L, Celebi R, Cesareni G, Chang H, Chen G, Chen H, Cheng L, Chernomoretz A, Chicco D, Cho K, Cho S, Choi D, Choi J, Choi K, Choi M, De Cock M, Coker E, Cortes-Ciriano I, Cserzo M, Cubuk C, Curtis C, Van Daele D, Dang C, Dijkstra T, Dopazo J, Draghici S, Drosou A, Dumontier M, Ehrhart F, Eid F, ElHefnawi M, Elmarakeby H, van Engelen B, Engin H, de Esch I, Evelo C, Falcao A, Farag S, Fernandez-Lozano C, Fisch K, Flobak A, Fornari C, Foroushani A, Fotso D, Fourches D, Friend S, Frigessi A, Gao F, Gao X, Gerold J, Gestraud P, Ghosh S, Gillberg J, Godoy-Lorite A, Godynyuk L, Godzik A, Goldenberg A, Gomez-Cabrero D, Gonen M, de Graaf C, Gray H, Grechkin M, Guimera R, Guney E, Haibe-Kains B, Han Y, Hase T, He D, He L, Heath L, Hellton K, Helmer-Citterich M, Hidalgo M, Hidru D, Hill S, Hochreiter S, Hong S, Hovig E, Hsueh Y, Hu Z, Huang J, Huang R, Hunyady L, Hwang J, Hwang T, Hwang W, Hwang Y, Isayev O, Walk O, Jack J, Jahandideh S, Ji J, Jo Y, Kamola P, Kanev G, Karacosta L, Karimi M, Kaski S, Kazanov M, Khamis A, Khan S, Kiani N, Kim A, Kim J, Kim K, Kim S, Kim Y, Kirk P, Kitano H, Klambauer G, Knowles D, Ko M, Kohn-Luque A, Kooistra A, Kuenemann M, Kuiper M, Kurz C, Kwon M, van Laarhoven T, Laegreid A, Lederer S, Lee H, Lee J, Lee Y, Leppaho E, Lewis R, Li J, Li L, Liley J, Lim W, Lin C, Liu Y, Lopez Y, Low J, Lysenko A, Machado D, Madhukar N, De Maeyer D, Malpartida A, Mamitsuka H, Marabita F, Marchal K, Marttinen P, Mason D, Mazaheri A, Mehmood A, Mehreen A, Michaut M, Miller R, Mitsopoulos C, Modos D, Van Moerbeke M, Moo K, Motsinger-Reif A, Movva R, Muraru S, Muratov E, Mushthofa M, Nagarajan N, Nakken S, Nath A, Neuvial P, Newton R, Ning Z, De Niz C, Oliva B, Olsen C, Palmeri A, Panesar B, Papadopoulos S, Park J, Park S, Pawitan Y, Peluso D, Pendyala S, Peng J, Perfetto L, Pirro S, Plevritis S, Politi R, Poon H, Porta E, Prellner I, Preuer K, Pujana M, Ramnarine R, Reid J, Reyal F, Richardson S, Ricketts C, Rieswijk L, Rocha M, Rodriguez-Gonzalvez C, Roell K, Rotroff D, de Ruiter J, Rukawa P, Sadacca B, Safikhani Z, Safitri F, Sales-Pardo M, Sauer S, Schlichting M, Seoane J, Serra J, Shang M, Sharma A, Sharma H, Shen Y, Shiga M, Shin M, Shkedy Z, Shopsowitz K, Sinai S, Skola D, Smirnov P, Soerensen I, Soerensen P, Song J, Song S, Soufan O, Spitzmueller A, Steipe B, Suphavilai C, Tamayo S, Tamborero D, Tang J, Tanoli Z, Tarres-Deulofeu M, Tegner J, Thommesen L, Tonekaboni S, Tran H, De Troyer E, Truong A, Tsunoda T, Turu G, Tzeng G, Verbeke L, Videla S, Vis D, Voronkov A, Votis K, Wang A, Wang H, Wang P, Wang S, Wang W, Wang X, Wennerberg K, Wernisch L, Wessels L, van Westen G, Westerman B, White S, Willighagen E, Wurdinger T, Xie L, Xie S, Xu H, Yadav B, Yau C, Yeerna H, Yin J, Yu M, Yun S, Zakharov A, Zamichos A, Zanin M, Zeng L, Zenil H, Zhang F, Zhang P, Zhang W, Zhao H, Zhao L, Zheng W, Zoufir A, Zucknick M, AstraZeneca-Sanger Drug Combinatio, Ege Üniversitesi, Gönen, Mehmet (ORCID 0000-0002-2483-075X & YÖK ID 237468), Menden, Michael P., Wang, Dennis, Mason, Mike J., Szalai, Bence, Bulusu, Krishna C., Guan, Yuanfang, Yu, Thomas, Kang, Jaewoo, Jeon, Minji, Wolfinger, Russ, Nguyen, Tin, Zaslavskiy, Mikhail, Jang, In Sock, Ghazoui, Zara, Ahsen, Mehmet Eren, Vogel, Robert, Neto, Elias Chaibub, Norman, Thea, Tang, Eric K. Y., Garnett, Mathew J., Di Veroli, Giovanni Y., Fawell, Stephen, Stolovitzky, Gustavo, Guinney, Justin, Dry, Jonathan R., Saez-Rodriguez, Julio, Abante, Jordi, Abecassis, Barbara Schmitz, Aben, Nanne, Aghamirzaie, Delasa, Aittokallio, Tero, Akhtari, Farida S., Al-lazikani, Bissan, Alam, Tanvir, Allam, Amin, Allen, Chad, de Almeida, Mariana Pelicano, Altarawy, Doaa, Alves, Vinicius, Amadoz, Alicia, Anchang, Benedict, Antolin, Albert A., Ash, Jeremy R., Romeo Aznar, Victoria, Ba-alawi, Wail, Bagheri, Moeen, Bajic, Vladimir, Ball, Gordon, Ballester, Pedro J., Baptista, Delora, Bare, Christopher, Bateson, Mathilde, Bender, Andreas, Bertrand, Denis, Wijayawardena, Bhagya, Boroevich, Keith A., Bosdriesz, Evert, Bougouffa, Salim, Bounova, Gergana, Brouwer, Thomas, Bryant, Barbara, Calaza, Manuel, Calderone, Alberto, Calza, Stefano, Capuzzi, Stephen, Carbonell-Caballero, Jose, Carlin, Daniel, Carter, Hannah, Castagnoli, Luisa, Celebi, Remzi, Cesareni, Gianni, Chang, Hyeokyoon, Chen, Guocai, Chen, Haoran, Chen, Huiyuan, Cheng, Lijun, Chernomoretz, Ariel, Chicco, Davide, Cho, Kwang-Hyun, Cho, Sunghwan, Choi, Daeseon, Choi, Jaejoon, Choi, Kwanghun, Choi, Minsoo, De Cock, Martine, Coker, Elizabeth, Cortes-Ciriano, Isidro, Cserzo, Miklos, Cubuk, Cankut, Curtis, Christina, Van Daele, Dries, Dang, Cuong C., Dijkstra, Tjeerd, Dopazo, Joaquin, Draghici, Sorin, Drosou, Anastasios, Dumontier, Michel, Ehrhart, Friederike, Eid, Fatma-Elzahraa, ElHefnawi, Mahmoud, Elmarakeby, Haitham, van Engelen, Bo, Engin, Hatice Billur, de Esch, Iwan, Evelo, Chris, Falcao, Andre O., Farag, Sherif, Fernandez-Lozano, Carlos, Fisch, Kathleen, Flobak, Asmund, Fornari, Chiara, Foroushani, Amir B. K., Fotso, Donatien Chedom, Fourches, Denis, Friend, Stephen, Frigessi, Arnoldo, Gao, Feng, Gao, Xiaoting, Gerold, Jeffrey M., Gestraud, Pierre, Ghosh, Samik, Gillberg, Jussi, Godoy-Lorite, Antonia, Godynyuk, Lizzy, Godzik, Adam, Goldenberg, Anna, Gomez-Cabrero, David, de Graaf, Chris, Gray, Harry, Grechkin, Maxim, Guimera, Roger, Guney, Emre, Haibe-Kains, Benjamin, Han, Younghyun, Hase, Takeshi, He, Di, He, Liye, Heath, Lenwood S., Hellton, Kristoffer H., Helmer-Citterich, Manuela, Hidalgo, Marta R., Hidru, Daniel, Hill, Steven M., Hochreiter, Sepp, Hong, Seungpyo, Hovig, Eivind, Hsueh, Ya-Chih, Hu, Zhiyuan, Huang, Justin K., Huang, R. Stephanie, Hunyady, Laszlo, Hwang, Jinseub, Hwang, Tae Hyun, Hwang, Woochang, Hwang, Yongdeuk, Isayev, Olexandr, Walk, Oliver Bear Don't, Jack, John, Jahandideh, Samad, Ji, Jiadong, Jo, Yousang, Kamola, Piotr J., Kanev, Georgi K., Karacosta, Loukia, Karimi, Mostafa, Kaski, Samuel, Kazanov, Marat, Khamis, Abdullah M., Khan, Suleiman Ali, Kiani, Narsis A., Kim, Allen, Kim, Jinhan, Kim, Juntae, Kim, Kiseong, Kim, Kyung, Kim, Sunkyu, Kim, Yongsoo, Kim, Yunseong, Kirk, Paul D. W., Kitano, Hiroaki, Klambauer, Gunter, Knowles, David, Ko, Melissa, Kohn-Luque, Alvaro, Kooistra, Albert J., Kuenemann, Melaine A., Kuiper, Martin, Kurz, Christoph, Kwon, Mijin, van Laarhoven, Twan, Laegreid, Astrid, Lederer, Simone, Lee, Heewon, Lee, Jeon, Lee, Yun Woo, Leppaho, Eemeli, Lewis, Richard, Li, Jing, Li, Lang, Liley, James, Lim, Weng Khong, Lin, Chieh, Liu, Yiyi, Lopez, Yosvany, Low, Joshua, Lysenko, Artem, Machado, Daniel, Madhukar, Neel, De Maeyer, Dries, Malpartida, Ana Belen, Mamitsuka, Hiroshi, Marabita, Francesco, Marchal, Kathleen, Marttinen, Pekka, Mason, Daniel, Mazaheri, Alireza, Mehmood, Arfa, Mehreen, Ali, Michaut, Magali, Miller, Ryan A., Mitsopoulos, Costas, Modos, Dezso, Van Moerbeke, Marijke, Moo, Keagan, Motsinger-Reif, Alison, Movva, Rajiv, Muraru, Sebastian, Muratov, Eugene, Mushthofa, Mushthofa, Nagarajan, Niranjan, Nakken, Sigve, Nath, Aritro, Neuvial, Pierre, Newton, Richard, Ning, Zheng, De Niz, Carlos, Oliva, Baldo, Olsen, Catharina, Palmeri, Antonio, Panesar, Bhawan, Papadopoulos, Stavros, Park, Jaesub, Park, Seonyeong, Park, Sungjoon, Pawitan, Yudi, Peluso, Daniele, Pendyala, Sriram, Peng, Jian, Perfetto, Livia, Pirro, Stefano, Plevritis, Sylvia, Politi, Regina, Poon, Hoifung, Porta, Eduard, Prellner, Isak, Preuer, Kristina, Angel Pujana, Miguel, Ramnarine, Ricardo, Reid, John E., Reyal, Fabien, Richardson, Sylvia, Ricketts, Camir, Rieswijk, Linda, Rocha, Miguel, Rodriguez-Gonzalvez, Carmen, Roell, Kyle, Rotroff, Daniel, de Ruiter, Julian R., Rukawa, Ploy, Sadacca, Benjamin, Safikhani, Zhaleh, Safitri, Fita, Sales-Pardo, Marta, Sauer, Sebastian, Schlichting, Moritz, Seoane, Jose A., Serra, Jordi, Shang, Ming-Mei, Sharma, Alok, Sharma, Hari, Shen, Yang, Shiga, Motoki, Shin, Moonshik, Shkedy, Ziv, Shopsowitz, Kevin, Sinai, Sam, Skola, Dylan, Smirnov, Petr, Soerensen, Izel Fourie, Soerensen, Peter, Song, Je-Hoon, Song, Sang Ok, Soufan, Othman, Spitzmueller, Andreas, Steipe, Boris, Suphavilai, Chayaporn, Tamayo, Sergio Pulido, Tamborero, David, Tang, Jing, Tanoli, Zia-ur-Rehman, Tarres-Deulofeu, Marc, Tegner, Jesper, Thommesen, Liv, Tonekaboni, Seyed Ali Madani, Tran, Hong, De Troyer, Ewoud, Truong, Amy, Tsunoda, Tatsuhiko, Turu, Gabor, Tzeng, Guang-Yo, Verbeke, Lieven, Videla, Santiago, Vis, Daniel, Voronkov, Andrey, Votis, Konstantinos, Wang, Ashley, Wang, Hong-Qiang Horace, Wang, Po-Wei, Wang, Sheng, Wang, Wei, Wang, Xiaochen, Wang, Xin, Wennerberg, Krister, Wernisch, Lorenz, Wessels, Lodewyk, van Westen, Gerard J. P., Westerman, Bart A., White, Simon Richard, Willighagen, Egon, Wurdinger, Tom, Xie, Lei, Xie, Shuilian, Xu, Hua, Yadav, Bhagwan, Yau, Christopher, Yeerna, Huwate, Yin, Jia Wei, Yu, Michael, Yu, MinHwan, Yun, So Jeong, Zakharov, Alexey, Zamichos, Alexandros, Zanin, Massimiliano, Zeng, Li, Zenil, Hector, Zhang, Frederick, Zhang, Pengyue, Zhang, Wei, Zhao, Hongyu, Zhao, Lan, Zheng, Wenjin, Zoufir, Azedine, Zucknick, Manuela, College of Engineering, Department of Industrial Engineering, Institute of Data Science, RS: FSE DACS IDS, Bioinformatica, RS: NUTRIM - R1 - Obesity, diabetes and cardiovascular health, RS: FHML MaCSBio, Promovendi NTM, Tero Aittokallio / Principal Investigator, Bioinformatics, Institute for Molecular Medicine Finland, Hu, Z, Fotso, DC, Menden, M, Wang, D, Mason, M, Szalai, B, Bulusu, K, Guan, Y, Yu, T, Kang, J, Jeon, M, Wolfinger, R, Nguyen, T, Zaslavskiy, M, Abante, J, Abecassis, B, Aben, N, Aghamirzaie, D, Aittokallio, T, Akhtari, F, Al-lazikani, B, Alam, T, Allam, A, Allen, C, de Almeida, M, Altarawy, D, Alves, V, Amadoz, A, Anchang, B, Antolin, A, Ash, J, Aznar, V, Ba-alawi, W, Bagheri, M, Bajic, V, Ball, G, Ballester, P, Baptista, D, Bare, C, Bateson, M, Bender, A, Bertrand, D, Wijayawardena, B, Boroevich, K, Bosdriesz, E, Bougouffa, S, Bounova, G, Brouwer, T, Bryant, B, Calaza, M, Calderone, A, Calza, S, Capuzzi, S, Carbonell-Caballero, J, Carlin, D, Carter, H, Castagnoli, L, Celebi, R, Cesareni, G, Chang, H, Chen, G, Chen, H, Cheng, L, Chernomoretz, A, Chicco, D, Cho, K, Cho, S, Choi, D, Choi, J, Choi, K, Choi, M, Cock, M, Coker, E, Cortes-Ciriano, I, Cserzo, M, Cubuk, C, Curtis, C, Daele, D, Dang, C, Dijkstra, T, Dopazo, J, Draghici, S, Drosou, A, Dumontier, M, Ehrhart, F, Eid, F, Elhefnawi, M, Elmarakeby, H, van Engelen, B, Engin, H, de Esch, I, Evelo, C, Falcao, A, Farag, S, Fernandez-Lozano, C, Fisch, K, Flobak, A, Fornari, C, Foroushani, A, Fotso, D, Fourches, D, Friend, S, Frigessi, A, Gao, F, Gao, X, Gerold, J, Gestraud, P, Ghosh, S, Gillberg, J, Godoy-Lorite, A, Godynyuk, L, Godzik, A, Goldenberg, A, Gomez-Cabrero, D, Gonen, M, de Graaf, C, Gray, H, Grechkin, M, Guimera, R, Guney, E, Haibe-Kains, B, Han, Y, Hase, T, He, D, He, L, Heath, L, Hellton, K, Helmer-Citterich, M, Hidalgo, M, Hidru, D, Hill, S, Hochreiter, S, Hong, S, Hovig, E, Hsueh, Y, Huang, J, Huang, R, Hunyady, L, Hwang, J, Hwang, T, Hwang, W, Hwang, Y, Isayev, O, Don't Walk, O, Jack, J, Jahandideh, S, Ji, J, Jo, Y, Kamola, P, Kanev, G, Karacosta, L, Karimi, M, Kaski, S, Kazanov, M, Khamis, A, Khan, S, Kiani, N, Kim, A, Kim, J, Kim, K, Kim, S, Kim, Y, Kirk, P, Kitano, H, Klambauer, G, Knowles, D, Ko, M, Kohn-Luque, A, Kooistra, A, Kuenemann, M, Kuiper, M, Kurz, C, Kwon, M, van Laarhoven, T, Laegreid, A, Lederer, S, Lee, H, Lee, J, Lee, Y, Lepp_aho, E, Lewis, R, Li, J, Li, L, Liley, J, Lim, W, Lin, C, Liu, Y, Lopez, Y, Low, J, Lysenko, A, Machado, D, Madhukar, N, Maeyer, D, Malpartida, A, Mamitsuka, H, Marabita, F, Marchal, K, Marttinen, P, Mason, D, Mazaheri, A, Mehmood, A, Mehreen, A, Michaut, M, Miller, R, Mitsopoulos, C, Modos, D, Moerbeke, M, Moo, K, Motsinger-Reif, A, Movva, R, Muraru, S, Muratov, E, Mushthofa, M, Nagarajan, N, Nakken, S, Nath, A, Neuvial, P, Newton, R, Ning, Z, Niz, C, Oliva, B, Olsen, C, Palmeri, A, Panesar, B, Papadopoulos, S, Park, J, Park, S, Pawitan, Y, Peluso, D, Pendyala, S, Peng, J, Perfetto, L, Pirro, S, Plevritis, S, Politi, R, Poon, H, Porta, E, Prellner, I, Preuer, K, Pujana, M, Ramnarine, R, Reid, J, Reyal, F, Richardson, S, Ricketts, C, Rieswijk, L, Rocha, M, Rodriguez-Gonzalvez, C, Roell, K, Rotroff, D, de Ruiter, J, Rukawa, P, Sadacca, B, Safikhani, Z, Safitri, F, Sales-Pardo, M, Sauer, S, Schlichting, M, Seoane, J, Serra, J, Shang, M, Sharma, A, Sharma, H, Shen, Y, Shiga, M, Shin, M, Shkedy, Z, Shopsowitz, K, Sinai, S, Skola, D, Smirnov, P, Soerensen, I, Soerensen, P, Song, J, Song, S, Soufan, O, Spitzmueller, A, Steipe, B, Suphavilai, C, Tamayo, S, Tamborero, D, Tang, J, Tanoli, Z, Tarres-Deulofeu, M, Tegner, J, Thommesen, L, Tonekaboni, S, Tran, H, Troyer, E, Truong, A, Tsunoda, T, Turu, G, Tzeng, G, Verbeke, L, Videla, S, Vis, D, Voronkov, A, Votis, K, Wang, A, Wang, H, Wang, P, Wang, S, Wang, W, Wang, X, Wennerberg, K, Wernisch, L, Wessels, L, van Westen, G, Westerman, B, White, S, Willighagen, E, Wurdinger, T, Xie, L, Xie, S, Xu, H, Yadav, B, Yau, C, Yeerna, H, Yin, J, Yu, M, Yun, S, Zakharov, A, Zamichos, A, Zanin, M, Zeng, L, Zenil, H, Zhang, F, Zhang, P, Zhang, W, Zhao, H, Zhao, L, Zheng, W, Zoufir, A, Zucknick, M, Jang, I, Ghazoui, Z, Ahsen, M, Vogel, R, Neto, E, Norman, T, Tang, E, Garnett, M, Veroli, G, Fawell, S, Stolovitzky, G, Guinney, J, Dry, J, Saez-Rodriguez, J, Menden, Michael P. [0000-0003-0267-5792], Mason, Mike J. [0000-0002-5652-7739], Yu, Thomas [0000-0002-5841-0198], Kang, Jaewoo [0000-0001-6798-9106], Nguyen, Tin [0000-0001-8001-9470], Ahsen, Mehmet Eren [0000-0002-4907-0427], Stolovitzky, Gustavo [0000-0002-9618-2819], Guinney, Justin [0000-0003-1477-1888], Saez-Rodriguez, Julio [0000-0002-8552-8976], Apollo - University of Cambridge Repository, Menden, Michael P [0000-0003-0267-5792], Mason, Mike J [0000-0002-5652-7739], Pathology, CCA - Cancer biology and immunology, Medical oncology laboratory, Neurosurgery, Chemistry and Pharmaceutical Sciences, AIMMS, Medicinal chemistry, Universidade do Minho, Department of Computer Science, Professorship Marttinen P., Aalto-yliopisto, and Aalto University
- Subjects
Drug Resistance ,02 engineering and technology ,13 ,PATHWAY ,Antineoplastic Combined Chemotherapy Protocols ,Molecular Targeted Therapy ,Càncer ,lcsh:Science ,media_common ,Cancer ,Tumor ,Settore BIO/18 ,Settore BIO/11 ,Drug combinations ,High-throughput screening ,Drug Synergism ,purl.org/becyt/ford/1.2 [https] ,Genomics ,Machine Learning ,predictions ,3. Good health ,ddc ,Technologie de l'environnement, contrôle de la pollution ,Benchmarking ,5.1 Pharmaceuticals ,Cancer treatment ,Farmacogenètica ,Science & Technology - Other Topics ,Development of treatments and therapeutic interventions ,0210 nano-technology ,Human ,Drug ,media_common.quotation_subject ,Science ,49/23 ,ADAM17 Protein ,General Biochemistry, Genetics and Molecular Biology ,03 medical and health sciences ,SDG 3 - Good Health and Well-being ,RESOURCE ,Machine learning ,Genetics ,Chimie ,Humans ,BREAST-CANCER ,CELL ,49/98 ,Science & Technology ,Antineoplastic Combined Chemotherapy Protocol ,45 ,MUTATIONS ,Computational Biology ,Androgen receptor ,Breast-cancer ,Gene ,Cell ,Inhibition ,Resistance ,Pathway ,Mutations ,Landscape ,Resource ,631/114/1305 ,medicine.disease ,Drug synergy ,49 ,030104 developmental biology ,Pharmacogenetics ,Mutation ,Ciências Médicas::Biotecnologia Médica ,lcsh:Q ,631/154/1435/2163 ,Biomarkers ,RESISTANCE ,0301 basic medicine ,ING-INF/06 - BIOINGEGNERIA ELETTRONICA E INFORMATICA ,Statistical methods ,Computer science ,General Physics and Astronomy ,Datasets as Topic ,Drug resistance ,purl.org/becyt/ford/1 [https] ,Phosphatidylinositol 3-Kinases ,Biotecnologia Médica [Ciências Médicas] ,Neoplasms ,Science and technology ,Phosphoinositide-3 Kinase Inhibitors ,Multidisciplinary ,Biomarkers, Tumor ,Cell Line, Tumor ,Drug Antagonism ,Drug Resistance, Neoplasm ,Treatment Outcome ,Pharmacogenetic ,article ,ANDROGEN RECEPTOR ,49/39 ,631/114/2415 ,021001 nanoscience & nanotechnology ,692/4028/67 ,Multidisciplinary Sciences ,317 Pharmacy ,Patient Safety ,Systems biology ,3122 Cancers ,INHIBITION ,Computational biology ,Cell Line ,medicine ,LANDSCAPE ,Physique ,Human Genome ,Data Science ,General Chemistry ,AstraZeneca-Sanger Drug Combination DREAM Consortium ,Astronomie ,GENE ,Good Health and Well Being ,Pharmacogenomics ,Genomic ,Neoplasm ,631/553 ,Phosphatidylinositol 3-Kinase - Abstract
PubMed: 31209238, The effectiveness of most cancer targeted therapies is short-lived. Tumors often develop resistance that might be overcome with drug combinations. However, the number of possible combinations is vast, necessitating data-driven approaches to find optimal patient-specific treatments. Here we report AstraZeneca’s large drug combination dataset, consisting of 11,576 experiments from 910 combinations across 85 molecularly characterized cancer cell lines, and results of a DREAM Challenge to evaluate computational strategies for predicting synergistic drug pairs and biomarkers. 160 teams participated to provide a comprehensive methodological development and benchmarking. Winning methods incorporate prior knowledge of drug-target interactions. Synergy is predicted with an accuracy matching biological replicates for >60% of combinations. However, 20% of drug combinations are poorly predicted by all methods. Genomic rationale for synergy predictions are identified, including ADAM17 inhibitor antagonism when combined with PIK3CB/D inhibition contrasting to synergy when combined with other PI3K-pathway inhibitors in PIK3CA mutant cells. © 2019, The Author(s)., National Institute for Health Research, NIHR Wellcome Trust, WT: 102696, 206194 Magyar Tudományos Akadémia, MTA Bayer 668858 PrECISE AstraZeneca, We thank the Genomics of Drug Sensitivity in Cancer and COSMIC teams at the Wellcome Trust Sanger Institute for help with the preparation of the molecular data, Denes Turei for help with Omnipath, and Katjusa Koler for help with matching drug names across combination screens. We thank AstraZeneca for funding and provision of data to the DREAM Consortium to run the challenge, and funding from the European Union Horizon 2020 research (under grant agreement No 668858 PrECISE to J.S.R.), the Joint Research Center for Computational Biomedicine (which is partially funded by Bayer AG) to J.S.R., National Institute for Health Research (NIHR) Sheffield Biomedical Research Center, Premium Postdoctoral Fellowship Program of the Hungarian Academy of Sciences. M.G lab is supported by Wellcome Trust (102696 and 206194)., Competing interests: K.C.B., Z.G., G.Y.D., E.K.Y.T., S.F., and J.R.D. are AstraZeneca employees. K.C.B., Z.G., E.K.Y.T., S.F., and J.R.D. are AstraZeneca shareholders. Y.G. receives personal compensation from Eli Lilly and Company, is a shareholder of Cleerly, Inc., and Ann Arbor Algorithms, Inc. M.G. receives research funding from AstraZeneca and has performed consultancy for Sanofi. The remaining authors declare no competing interests.
- Published
- 2019
- Full Text
- View/download PDF
3. Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen
- Author
-
Menden, M, Wang, D, Mason, M, Szalai, B, Bulusu, K, Guan, Y, Yu, T, Kang, J, Jeon, M, Wolfinger, R, Nguyen, T, Zaslavskiy, M, Abante, J, Abecassis, B, Aben, N, Aghamirzaie, D, Aittokallio, T, Akhtari, F, Al-lazikani, B, Alam, T, Allam, A, Allen, C, de Almeida, M, Altarawy, D, Alves, V, Amadoz, A, Anchang, B, Antolin, A, Ash, J, Aznar, V, Ba-alawi, W, Bagheri, M, Bajic, V, Ball, G, Ballester, P, Baptista, D, Bare, C, Bateson, M, Bender, A, Bertrand, D, Wijayawardena, B, Boroevich, K, Bosdriesz, E, Bougouffa, S, Bounova, G, Brouwer, T, Bryant, B, Calaza, M, Calderone, A, Calza, S, Capuzzi, S, Carbonell-Caballero, J, Carlin, D, Carter, H, Castagnoli, L, Celebi, R, Cesareni, G, Chang, H, Chen, G, Chen, H, Cheng, L, Chernomoretz, A, Chicco, D, Cho, K, Cho, S, Choi, D, Choi, J, Choi, K, Choi, M, Cock, M, Coker, E, Cortes-Ciriano, I, Cserzo, M, Cubuk, C, Curtis, C, Daele, D, Dang, C, Dijkstra, T, Dopazo, J, Draghici, S, Drosou, A, Dumontier, M, Ehrhart, F, Eid, F, Elhefnawi, M, Elmarakeby, H, van Engelen, B, Engin, H, de Esch, I, Evelo, C, Falcao, A, Farag, S, Fernandez-Lozano, C, Fisch, K, Flobak, A, Fornari, C, Foroushani, A, Fotso, D, Fourches, D, Friend, S, Frigessi, A, Gao, F, Gao, X, Gerold, J, Gestraud, P, Ghosh, S, Gillberg, J, Godoy-Lorite, A, Godynyuk, L, Godzik, A, Goldenberg, A, Gomez-Cabrero, D, Gonen, M, de Graaf, C, Gray, H, Grechkin, M, Guimera, R, Guney, E, Haibe-Kains, B, Han, Y, Hase, T, He, D, He, L, Heath, L, Hellton, K, Helmer-Citterich, M, Hidalgo, M, Hidru, D, Hill, S, Hochreiter, S, Hong, S, Hovig, E, Hsueh, Y, Hu, Z, Huang, J, Huang, R, Hunyady, L, Hwang, J, Hwang, T, Hwang, W, Hwang, Y, Isayev, O, Don't Walk, O, Jack, J, Jahandideh, S, Ji, J, Jo, Y, Kamola, P, Kanev, G, Karacosta, L, Karimi, M, Kaski, S, Kazanov, M, Khamis, A, Khan, S, Kiani, N, Kim, A, Kim, J, Kim, K, Kim, S, Kim, Y, Kirk, P, Kitano, H, Klambauer, G, Knowles, D, Ko, M, Kohn-Luque, A, Kooistra, A, Kuenemann, M, Kuiper, M, Kurz, C, Kwon, M, van Laarhoven, T, Laegreid, A, Lederer, S, Lee, H, Lee, J, Lee, Y, Lepp_aho, E, Lewis, R, Li, J, Li, L, Liley, J, Lim, W, Lin, C, Liu, Y, Lopez, Y, Low, J, Lysenko, A, Machado, D, Madhukar, N, Maeyer, D, Malpartida, A, Mamitsuka, H, Marabita, F, Marchal, K, Marttinen, P, Mason, D, Mazaheri, A, Mehmood, A, Mehreen, A, Michaut, M, Miller, R, Mitsopoulos, C, Modos, D, Moerbeke, M, Moo, K, Motsinger-Reif, A, Movva, R, Muraru, S, Muratov, E, Mushthofa, M, Nagarajan, N, Nakken, S, Nath, A, Neuvial, P, Newton, R, Ning, Z, Niz, C, Oliva, B, Olsen, C, Palmeri, A, Panesar, B, Papadopoulos, S, Park, J, Park, S, Pawitan, Y, Peluso, D, Pendyala, S, Peng, J, Perfetto, L, Pirro, S, Plevritis, S, Politi, R, Poon, H, Porta, E, Prellner, I, Preuer, K, Pujana, M, Ramnarine, R, Reid, J, Reyal, F, Richardson, S, Ricketts, C, Rieswijk, L, Rocha, M, Rodriguez-Gonzalvez, C, Roell, K, Rotroff, D, de Ruiter, J, Rukawa, P, Sadacca, B, Safikhani, Z, Safitri, F, Sales-Pardo, M, Sauer, S, Schlichting, M, Seoane, J, Serra, J, Shang, M, Sharma, A, Sharma, H, Shen, Y, Shiga, M, Shin, M, Shkedy, Z, Shopsowitz, K, Sinai, S, Skola, D, Smirnov, P, Soerensen, I, Soerensen, P, Song, J, Song, S, Soufan, O, Spitzmueller, A, Steipe, B, Suphavilai, C, Tamayo, S, Tamborero, D, Tang, J, Tanoli, Z, Tarres-Deulofeu, M, Tegner, J, Thommesen, L, Tonekaboni, S, Tran, H, Troyer, E, Truong, A, Tsunoda, T, Turu, G, Tzeng, G, Verbeke, L, Videla, S, Vis, D, Voronkov, A, Votis, K, Wang, A, Wang, H, Wang, P, Wang, S, Wang, W, Wang, X, Wennerberg, K, Wernisch, L, Wessels, L, van Westen, G, Westerman, B, White, S, Willighagen, E, Wurdinger, T, Xie, L, Xie, S, Xu, H, Yadav, B, Yau, C, Yeerna, H, Yin, J, Yu, M, Yun, S, Zakharov, A, Zamichos, A, Zanin, M, Zeng, L, Zenil, H, Zhang, F, Zhang, P, Zhang, W, Zhao, H, Zhao, L, Zheng, W, Zoufir, A, Zucknick, M, Jang, I, Ghazoui, Z, Ahsen, M, Vogel, R, Neto, E, Norman, T, Tang, E, Garnett, M, Veroli, G, Fawell, S, Stolovitzky, G, Guinney, J, Dry, J, Saez-Rodriguez, J, Menden M. P., Wang D., Mason M. J., Szalai B., Bulusu K. C., Guan Y., Yu T., Kang J., Jeon M., Wolfinger R., Nguyen T., Zaslavskiy M., Abante J., Abecassis B. S., Aben N., Aghamirzaie D., Aittokallio T., Akhtari F. S., Al-lazikani B., Alam T., Allam A., Allen C., de Almeida M. P., Altarawy D., Alves V., Amadoz A., Anchang B., Antolin A. A., Ash J. R., Aznar V. R., Ba-alawi W., Bagheri M., Bajic V., Ball G., Ballester P. J., Baptista D., Bare C., Bateson M., Bender A., Bertrand D., Wijayawardena B., Boroevich K. A., Bosdriesz E., Bougouffa S., Bounova G., Brouwer T., Bryant B., Calaza M., Calderone A., Calza S., Capuzzi S., Carbonell-Caballero J., Carlin D., Carter H., Castagnoli L., Celebi R., Cesareni G., Chang H., Chen G., Chen H., Cheng L., Chernomoretz A., Chicco D., Cho K. -H., Cho S., Choi D., Choi J., Choi K., Choi M., Cock M. D., Coker E., Cortes-Ciriano I., Cserzo M., Cubuk C., Curtis C., Daele D. V., Dang C. C., Dijkstra T., Dopazo J., Draghici S., Drosou A., Dumontier M., Ehrhart F., Eid F. -E., ElHefnawi M., Elmarakeby H., van Engelen B., Engin H. B., de Esch I., Evelo C., Falcao A. O., Farag S., Fernandez-Lozano C., Fisch K., Flobak A., Fornari C., Foroushani A. B. K., Fotso D. C., Fourches D., Friend S., Frigessi A., Gao F., Gao X., Gerold J. M., Gestraud P., Ghosh S., Gillberg J., Godoy-Lorite A., Godynyuk L., Godzik A., Goldenberg A., Gomez-Cabrero D., Gonen M., de Graaf C., Gray H., Grechkin M., Guimera R., Guney E., Haibe-Kains B., Han Y., Hase T., He D., He L., Heath L. S., Hellton K. H., Helmer-Citterich M., Hidalgo M. R., Hidru D., Hill S. M., Hochreiter S., Hong S., Hovig E., Hsueh Y. -C., Hu Z., Huang J. K., Huang R. S., Hunyady L., Hwang J., Hwang T. H., Hwang W., Hwang Y., Isayev O., Don't Walk O. B., Jack J., Jahandideh S., Ji J., Jo Y., Kamola P. J., Kanev G. K., Karacosta L., Karimi M., Kaski S., Kazanov M., Khamis A. M., Khan S. A., Kiani N. A., Kim A., Kim J., Kim K., Kim S., Kim Y., Kirk P. D. W., Kitano H., Klambauer G., Knowles D., Ko M., Kohn-Luque A., Kooistra A. J., Kuenemann M. A., Kuiper M., Kurz C., Kwon M., van Laarhoven T., Laegreid A., Lederer S., Lee H., Lee J., Lee Y. W., Lepp_aho E., Lewis R., Li J., Li L., Liley J., Lim W. K., Lin C., Liu Y., Lopez Y., Low J., Lysenko A., Machado D., Madhukar N., Maeyer D. D., Malpartida A. B., Mamitsuka H., Marabita F., Marchal K., Marttinen P., Mason D., Mazaheri A., Mehmood A., Mehreen A., Michaut M., Miller R. A., Mitsopoulos C., Modos D., Moerbeke M. V., Moo K., Motsinger-Reif A., Movva R., Muraru S., Muratov E., Mushthofa M., Nagarajan N., Nakken S., Nath A., Neuvial P., Newton R., Ning Z., Niz C. D., Oliva B., Olsen C., Palmeri A., Panesar B., Papadopoulos S., Park J., Park S., Pawitan Y., Peluso D., Pendyala S., Peng J., Perfetto L., Pirro S., Plevritis S., Politi R., Poon H., Porta E., Prellner I., Preuer K., Pujana M. A., Ramnarine R., Reid J. E., Reyal F., Richardson S., Ricketts C., Rieswijk L., Rocha M., Rodriguez-Gonzalvez C., Roell K., Rotroff D., de Ruiter J. R., Rukawa P., Sadacca B., Safikhani Z., Safitri F., Sales-Pardo M., Sauer S., Schlichting M., Seoane J. A., Serra J., Shang M. -M., Sharma A., Sharma H., Shen Y., Shiga M., Shin M., Shkedy Z., Shopsowitz K., Sinai S., Skola D., Smirnov P., Soerensen I. F., Soerensen P., Song J. -H., Song S. O., Soufan O., Spitzmueller A., Steipe B., Suphavilai C., Tamayo S. P., Tamborero D., Tang J., Tanoli Z. -U. -R., Tarres-Deulofeu M., Tegner J., Thommesen L., Tonekaboni S. A. M., Tran H., Troyer E. D., Truong A., Tsunoda T., Turu G., Tzeng G. -Y., Verbeke L., Videla S., Vis D., Voronkov A., Votis K., Wang A., Wang H. -Q. H., Wang P. -W., Wang S., Wang W., Wang X., Wennerberg K., Wernisch L., Wessels L., van Westen G. J. P., Westerman B. A., White S. R., Willighagen E., Wurdinger T., Xie L., Xie S., Xu H., Yadav B., Yau C., Yeerna H., Yin J. W., Yu M., Yu M. H., Yun S. J., Zakharov A., Zamichos A., Zanin M., Zeng L., Zenil H., Zhang F., Zhang P., Zhang W., Zhao H., Zhao L., Zheng W., Zoufir A., Zucknick M., Jang I. S., Ghazoui Z., Ahsen M. E., Vogel R., Neto E. C., Norman T., Tang E. K. Y., Garnett M. J., Veroli G. Y. D., Fawell S., Stolovitzky G., Guinney J., Dry J. R., Saez-Rodriguez J., Menden, M, Wang, D, Mason, M, Szalai, B, Bulusu, K, Guan, Y, Yu, T, Kang, J, Jeon, M, Wolfinger, R, Nguyen, T, Zaslavskiy, M, Abante, J, Abecassis, B, Aben, N, Aghamirzaie, D, Aittokallio, T, Akhtari, F, Al-lazikani, B, Alam, T, Allam, A, Allen, C, de Almeida, M, Altarawy, D, Alves, V, Amadoz, A, Anchang, B, Antolin, A, Ash, J, Aznar, V, Ba-alawi, W, Bagheri, M, Bajic, V, Ball, G, Ballester, P, Baptista, D, Bare, C, Bateson, M, Bender, A, Bertrand, D, Wijayawardena, B, Boroevich, K, Bosdriesz, E, Bougouffa, S, Bounova, G, Brouwer, T, Bryant, B, Calaza, M, Calderone, A, Calza, S, Capuzzi, S, Carbonell-Caballero, J, Carlin, D, Carter, H, Castagnoli, L, Celebi, R, Cesareni, G, Chang, H, Chen, G, Chen, H, Cheng, L, Chernomoretz, A, Chicco, D, Cho, K, Cho, S, Choi, D, Choi, J, Choi, K, Choi, M, Cock, M, Coker, E, Cortes-Ciriano, I, Cserzo, M, Cubuk, C, Curtis, C, Daele, D, Dang, C, Dijkstra, T, Dopazo, J, Draghici, S, Drosou, A, Dumontier, M, Ehrhart, F, Eid, F, Elhefnawi, M, Elmarakeby, H, van Engelen, B, Engin, H, de Esch, I, Evelo, C, Falcao, A, Farag, S, Fernandez-Lozano, C, Fisch, K, Flobak, A, Fornari, C, Foroushani, A, Fotso, D, Fourches, D, Friend, S, Frigessi, A, Gao, F, Gao, X, Gerold, J, Gestraud, P, Ghosh, S, Gillberg, J, Godoy-Lorite, A, Godynyuk, L, Godzik, A, Goldenberg, A, Gomez-Cabrero, D, Gonen, M, de Graaf, C, Gray, H, Grechkin, M, Guimera, R, Guney, E, Haibe-Kains, B, Han, Y, Hase, T, He, D, He, L, Heath, L, Hellton, K, Helmer-Citterich, M, Hidalgo, M, Hidru, D, Hill, S, Hochreiter, S, Hong, S, Hovig, E, Hsueh, Y, Hu, Z, Huang, J, Huang, R, Hunyady, L, Hwang, J, Hwang, T, Hwang, W, Hwang, Y, Isayev, O, Don't Walk, O, Jack, J, Jahandideh, S, Ji, J, Jo, Y, Kamola, P, Kanev, G, Karacosta, L, Karimi, M, Kaski, S, Kazanov, M, Khamis, A, Khan, S, Kiani, N, Kim, A, Kim, J, Kim, K, Kim, S, Kim, Y, Kirk, P, Kitano, H, Klambauer, G, Knowles, D, Ko, M, Kohn-Luque, A, Kooistra, A, Kuenemann, M, Kuiper, M, Kurz, C, Kwon, M, van Laarhoven, T, Laegreid, A, Lederer, S, Lee, H, Lee, J, Lee, Y, Lepp_aho, E, Lewis, R, Li, J, Li, L, Liley, J, Lim, W, Lin, C, Liu, Y, Lopez, Y, Low, J, Lysenko, A, Machado, D, Madhukar, N, Maeyer, D, Malpartida, A, Mamitsuka, H, Marabita, F, Marchal, K, Marttinen, P, Mason, D, Mazaheri, A, Mehmood, A, Mehreen, A, Michaut, M, Miller, R, Mitsopoulos, C, Modos, D, Moerbeke, M, Moo, K, Motsinger-Reif, A, Movva, R, Muraru, S, Muratov, E, Mushthofa, M, Nagarajan, N, Nakken, S, Nath, A, Neuvial, P, Newton, R, Ning, Z, Niz, C, Oliva, B, Olsen, C, Palmeri, A, Panesar, B, Papadopoulos, S, Park, J, Park, S, Pawitan, Y, Peluso, D, Pendyala, S, Peng, J, Perfetto, L, Pirro, S, Plevritis, S, Politi, R, Poon, H, Porta, E, Prellner, I, Preuer, K, Pujana, M, Ramnarine, R, Reid, J, Reyal, F, Richardson, S, Ricketts, C, Rieswijk, L, Rocha, M, Rodriguez-Gonzalvez, C, Roell, K, Rotroff, D, de Ruiter, J, Rukawa, P, Sadacca, B, Safikhani, Z, Safitri, F, Sales-Pardo, M, Sauer, S, Schlichting, M, Seoane, J, Serra, J, Shang, M, Sharma, A, Sharma, H, Shen, Y, Shiga, M, Shin, M, Shkedy, Z, Shopsowitz, K, Sinai, S, Skola, D, Smirnov, P, Soerensen, I, Soerensen, P, Song, J, Song, S, Soufan, O, Spitzmueller, A, Steipe, B, Suphavilai, C, Tamayo, S, Tamborero, D, Tang, J, Tanoli, Z, Tarres-Deulofeu, M, Tegner, J, Thommesen, L, Tonekaboni, S, Tran, H, Troyer, E, Truong, A, Tsunoda, T, Turu, G, Tzeng, G, Verbeke, L, Videla, S, Vis, D, Voronkov, A, Votis, K, Wang, A, Wang, H, Wang, P, Wang, S, Wang, W, Wang, X, Wennerberg, K, Wernisch, L, Wessels, L, van Westen, G, Westerman, B, White, S, Willighagen, E, Wurdinger, T, Xie, L, Xie, S, Xu, H, Yadav, B, Yau, C, Yeerna, H, Yin, J, Yu, M, Yun, S, Zakharov, A, Zamichos, A, Zanin, M, Zeng, L, Zenil, H, Zhang, F, Zhang, P, Zhang, W, Zhao, H, Zhao, L, Zheng, W, Zoufir, A, Zucknick, M, Jang, I, Ghazoui, Z, Ahsen, M, Vogel, R, Neto, E, Norman, T, Tang, E, Garnett, M, Veroli, G, Fawell, S, Stolovitzky, G, Guinney, J, Dry, J, Saez-Rodriguez, J, Menden M. P., Wang D., Mason M. J., Szalai B., Bulusu K. C., Guan Y., Yu T., Kang J., Jeon M., Wolfinger R., Nguyen T., Zaslavskiy M., Abante J., Abecassis B. S., Aben N., Aghamirzaie D., Aittokallio T., Akhtari F. S., Al-lazikani B., Alam T., Allam A., Allen C., de Almeida M. P., Altarawy D., Alves V., Amadoz A., Anchang B., Antolin A. A., Ash J. R., Aznar V. R., Ba-alawi W., Bagheri M., Bajic V., Ball G., Ballester P. J., Baptista D., Bare C., Bateson M., Bender A., Bertrand D., Wijayawardena B., Boroevich K. A., Bosdriesz E., Bougouffa S., Bounova G., Brouwer T., Bryant B., Calaza M., Calderone A., Calza S., Capuzzi S., Carbonell-Caballero J., Carlin D., Carter H., Castagnoli L., Celebi R., Cesareni G., Chang H., Chen G., Chen H., Cheng L., Chernomoretz A., Chicco D., Cho K. -H., Cho S., Choi D., Choi J., Choi K., Choi M., Cock M. D., Coker E., Cortes-Ciriano I., Cserzo M., Cubuk C., Curtis C., Daele D. V., Dang C. C., Dijkstra T., Dopazo J., Draghici S., Drosou A., Dumontier M., Ehrhart F., Eid F. -E., ElHefnawi M., Elmarakeby H., van Engelen B., Engin H. B., de Esch I., Evelo C., Falcao A. O., Farag S., Fernandez-Lozano C., Fisch K., Flobak A., Fornari C., Foroushani A. B. K., Fotso D. C., Fourches D., Friend S., Frigessi A., Gao F., Gao X., Gerold J. M., Gestraud P., Ghosh S., Gillberg J., Godoy-Lorite A., Godynyuk L., Godzik A., Goldenberg A., Gomez-Cabrero D., Gonen M., de Graaf C., Gray H., Grechkin M., Guimera R., Guney E., Haibe-Kains B., Han Y., Hase T., He D., He L., Heath L. S., Hellton K. H., Helmer-Citterich M., Hidalgo M. R., Hidru D., Hill S. M., Hochreiter S., Hong S., Hovig E., Hsueh Y. -C., Hu Z., Huang J. K., Huang R. S., Hunyady L., Hwang J., Hwang T. H., Hwang W., Hwang Y., Isayev O., Don't Walk O. B., Jack J., Jahandideh S., Ji J., Jo Y., Kamola P. J., Kanev G. K., Karacosta L., Karimi M., Kaski S., Kazanov M., Khamis A. M., Khan S. A., Kiani N. A., Kim A., Kim J., Kim K., Kim S., Kim Y., Kirk P. D. W., Kitano H., Klambauer G., Knowles D., Ko M., Kohn-Luque A., Kooistra A. J., Kuenemann M. A., Kuiper M., Kurz C., Kwon M., van Laarhoven T., Laegreid A., Lederer S., Lee H., Lee J., Lee Y. W., Lepp_aho E., Lewis R., Li J., Li L., Liley J., Lim W. K., Lin C., Liu Y., Lopez Y., Low J., Lysenko A., Machado D., Madhukar N., Maeyer D. D., Malpartida A. B., Mamitsuka H., Marabita F., Marchal K., Marttinen P., Mason D., Mazaheri A., Mehmood A., Mehreen A., Michaut M., Miller R. A., Mitsopoulos C., Modos D., Moerbeke M. V., Moo K., Motsinger-Reif A., Movva R., Muraru S., Muratov E., Mushthofa M., Nagarajan N., Nakken S., Nath A., Neuvial P., Newton R., Ning Z., Niz C. D., Oliva B., Olsen C., Palmeri A., Panesar B., Papadopoulos S., Park J., Park S., Pawitan Y., Peluso D., Pendyala S., Peng J., Perfetto L., Pirro S., Plevritis S., Politi R., Poon H., Porta E., Prellner I., Preuer K., Pujana M. A., Ramnarine R., Reid J. E., Reyal F., Richardson S., Ricketts C., Rieswijk L., Rocha M., Rodriguez-Gonzalvez C., Roell K., Rotroff D., de Ruiter J. R., Rukawa P., Sadacca B., Safikhani Z., Safitri F., Sales-Pardo M., Sauer S., Schlichting M., Seoane J. A., Serra J., Shang M. -M., Sharma A., Sharma H., Shen Y., Shiga M., Shin M., Shkedy Z., Shopsowitz K., Sinai S., Skola D., Smirnov P., Soerensen I. F., Soerensen P., Song J. -H., Song S. O., Soufan O., Spitzmueller A., Steipe B., Suphavilai C., Tamayo S. P., Tamborero D., Tang J., Tanoli Z. -U. -R., Tarres-Deulofeu M., Tegner J., Thommesen L., Tonekaboni S. A. M., Tran H., Troyer E. D., Truong A., Tsunoda T., Turu G., Tzeng G. -Y., Verbeke L., Videla S., Vis D., Voronkov A., Votis K., Wang A., Wang H. -Q. H., Wang P. -W., Wang S., Wang W., Wang X., Wennerberg K., Wernisch L., Wessels L., van Westen G. J. P., Westerman B. A., White S. R., Willighagen E., Wurdinger T., Xie L., Xie S., Xu H., Yadav B., Yau C., Yeerna H., Yin J. W., Yu M., Yu M. H., Yun S. J., Zakharov A., Zamichos A., Zanin M., Zeng L., Zenil H., Zhang F., Zhang P., Zhang W., Zhao H., Zhao L., Zheng W., Zoufir A., Zucknick M., Jang I. S., Ghazoui Z., Ahsen M. E., Vogel R., Neto E. C., Norman T., Tang E. K. Y., Garnett M. J., Veroli G. Y. D., Fawell S., Stolovitzky G., Guinney J., Dry J. R., and Saez-Rodriguez J.
- Abstract
The effectiveness of most cancer targeted therapies is short-lived. Tumors often develop resistance that might be overcome with drug combinations. However, the number of possible combinations is vast, necessitating data-driven approaches to find optimal patient-specific treatments. Here we report AstraZeneca’s large drug combination dataset, consisting of 11,576 experiments from 910 combinations across 85 molecularly characterized cancer cell lines, and results of a DREAM Challenge to evaluate computational strategies for predicting synergistic drug pairs and biomarkers. 160 teams participated to provide a comprehensive methodological development and benchmarking. Winning methods incorporate prior knowledge of drug-target interactions. Synergy is predicted with an accuracy matching biological replicates for >60% of combinations. However, 20% of drug combinations are poorly predicted by all methods. Genomic rationale for synergy predictions are identified, including ADAM17 inhibitor antagonism when combined with PIK3CB/D inhibition contrasting to synergy when combined with other PI3K-pathway inhibitors in PIK3CA mutant cells.
- Published
- 2019
4. Comparative analysis of the malate dehydrogenases isolated from the cytosolic fraction of several tissues of guinea-pig Cavia porcellus
- Author
-
Fornós, M., primary, Bozal, X., additional, Abante, J., additional, Cortés, A., additional, and Bozal, J., additional
- Published
- 1987
- Full Text
- View/download PDF
5. Expansion of the neocortex and protection from neurodegeneration by in vivo transient reprogramming.
- Author
-
Shen YR, Zaballa S, Bech X, Sancho-Balsells A, Rodríguez-Navarro I, Cifuentes-Díaz C, Seyit-Bremer G, Chun SH, Straub T, Abante J, Merino-Valverde I, Richart L, Gupta V, Li HY, Ballasch I, Alcázar N, Alberch J, Canals JM, Abad M, Serrano M, Klein R, Giralt A, and Del Toro D
- Subjects
- Animals, Mice, Neurons metabolism, Neurons pathology, Alzheimer Disease pathology, Alzheimer Disease metabolism, Disease Models, Animal, Cell Proliferation, Mice, Inbred C57BL, Neocortex pathology, Cellular Reprogramming
- Abstract
Yamanaka factors (YFs) can reverse some aging features in mammalian tissues, but their effects on the brain remain largely unexplored. Here, we induced YFs in the mouse brain in a controlled spatiotemporal manner in two different scenarios: brain development and adult stages in the context of neurodegeneration. Embryonic induction of YFs perturbed cell identity of both progenitors and neurons, but transient and low-level expression is tolerated by these cells. Under these conditions, YF induction led to progenitor expansion, an increased number of upper cortical neurons and glia, and enhanced motor and social behavior in adult mice. Additionally, controlled YF induction is tolerated by principal neurons in the adult dorsal hippocampus and prevented the development of several hallmarks of Alzheimer's disease, including cognitive decline and altered molecular signatures, in the 5xFAD mouse model. These results highlight the powerful impact of YFs on neural proliferation and their potential use in brain disorders., Competing Interests: Declaration of interests M.S. is a shareholder of Senolytic Therapeutics, Life Biosciences, Rejuveron Senescence Therapeutics, and Altos Labs. M.S. was a consultant of Rejuveron Senescence Therapeutics and Altos Labs until the end of 2022. M.A. is a shareholder of Altos Labs., (Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
6. DIVE: a reference-free statistical approach to diversity-generating and mobile genetic element discovery.
- Author
-
Abante J, Wang PL, and Salzman J
- Subjects
- DNA Transposable Elements, Gene Transfer, Horizontal, Interspersed Repetitive Sequences
- Abstract
Diversity-generating and mobile genetic elements are key to microbial and viral evolution and can result in evolutionary leaps. State-of-the-art algorithms to detect these elements have limitations. Here, we introduce DIVE, a new reference-free approach to overcome these limitations using information contained in sequencing reads alone. We show that DIVE has improved detection power compared to existing reference-based methods using simulations and real data. We use DIVE to rediscover and characterize the activity of known and novel elements and generate new biological hypotheses about the mobilome. Building on DIVE, we develop a reference-free framework capable of de novo discovery of mobile genetic elements., (© 2023. BioMed Central Ltd., part of Springer Nature.)
- Published
- 2023
- Full Text
- View/download PDF
7. DNA methylation entropy is associated with DNA sequence features and developmental epigenetic divergence.
- Author
-
Fang Y, Ji Z, Zhou W, Abante J, Koldobskiy MA, Ji H, and Feinberg AP
- Subjects
- Humans, Animals, Mice, Entropy, CpG Islands genetics, DNA genetics, DNA Methylation genetics, Epigenesis, Genetic
- Abstract
Epigenetic information defines tissue identity and is largely inherited in development through DNA methylation. While studied mostly for mean differences, methylation also encodes stochastic change, defined as entropy in information theory. Analyzing allele-specific methylation in 49 human tissue sample datasets, we find that methylation entropy is associated with specific DNA binding motifs, regulatory DNA, and CpG density. Then applying information theory to 42 mouse embryo methylation datasets, we find that the contribution of methylation entropy to time- and tissue-specific patterns of development is comparable to the contribution of methylation mean, and methylation entropy is associated with sequence and chromatin features conserved with human. Moreover, methylation entropy is directly related to gene expression variability in development, suggesting a role for epigenetic entropy in developmental plasticity., (© The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research.)
- Published
- 2023
- Full Text
- View/download PDF
8. Estimating DNA methylation potential energy landscapes from nanopore sequencing data.
- Author
-
Abante J, Kambhampati S, Feinberg AP, and Goutsias J
- Subjects
- Breast Neoplasms pathology, Cells, Cultured, Female, Genome, Human, Humans, Algorithms, Breast Neoplasms genetics, DNA Methylation, Epigenesis, Genetic, Lymphocytes metabolism, Nanopore Sequencing methods, Sequence Analysis, DNA methods
- Abstract
High-throughput third-generation nanopore sequencing devices have enormous potential for simultaneously observing epigenetic modifications in human cells over large regions of the genome. However, signals generated by these devices are subject to considerable noise that can lead to unsatisfactory detection performance and hamper downstream analysis. Here we develop a statistical method, CpelNano, for the quantification and analysis of 5mC methylation landscapes using nanopore data. CpelNano takes into account nanopore noise by means of a hidden Markov model (HMM) in which the true but unknown ("hidden") methylation state is modeled through an Ising probability distribution that is consistent with methylation means and pairwise correlations, whereas nanopore current signals constitute the observed state. It then estimates the associated methylation potential energy function by employing the expectation-maximization (EM) algorithm and performs differential methylation analysis via permutation-based hypothesis testing. Using simulations and analysis of published data obtained from three human cell lines (GM12878, MCF-10A, and MDA-MB-231), we show that CpelNano can faithfully estimate DNA methylation potential energy landscapes, substantially improving current methods and leading to a powerful tool for the modeling and analysis of epigenetic landscapes using nanopore sequencing data., (© 2021. The Author(s).)
- Published
- 2021
- Full Text
- View/download PDF
9. Converging genetic and epigenetic drivers of paediatric acute lymphoblastic leukaemia identified by an information-theoretic analysis.
- Author
-
Koldobskiy MA, Jenkinson G, Abante J, Rodriguez DiBlasi VA, Zhou W, Pujadas E, Idrizi A, Tryggvadottir R, Callahan C, Bonifant CL, Rabin KR, Brown PA, Ji H, Goutsias J, and Feinberg AP
- Subjects
- CCAAT-Enhancer-Binding Proteins genetics, Child, Core Binding Factor Alpha 2 Subunit genetics, Cytogenetic Analysis, DNA Methylation, Entropy, Gene Editing, Gene Expression Regulation, Neoplastic, Humans, Oncogene Proteins, Fusion genetics, Precursor Cell Lymphoblastic Leukemia-Lymphoma pathology, RNA-Seq, Single-Cell Analysis, Stochastic Processes, Ubiquitin-Protein Ligases genetics, Epigenesis, Genetic, Models, Theoretical, Precursor Cell Lymphoblastic Leukemia-Lymphoma genetics
- Abstract
In cancer, linking epigenetic alterations to drivers of transformation has been difficult, in part because DNA methylation analyses must capture epigenetic variability, which is central to tumour heterogeneity and tumour plasticity. Here, by conducting a comprehensive analysis, based on information theory, of differences in methylation stochasticity in samples from patients with paediatric acute lymphoblastic leukaemia (ALL), we show that ALL epigenomes are stochastic and marked by increased methylation entropy at specific regulatory regions and genes. By integrating DNA methylation and single-cell gene-expression data, we arrived at a relationship between methylation entropy and gene-expression variability, and found that epigenetic changes in ALL converge on a shared set of genes that overlap with genetic drivers involved in chromosomal translocations across the disease spectrum. Our findings suggest that an epigenetically driven gene-regulation network, with UHRF1 (ubiquitin-like with PHD and RING finger domains 1) as a central node, links genetic drivers and epigenetic mediators in ALL.
- Published
- 2021
- Full Text
- View/download PDF
10. A Dysregulated DNA Methylation Landscape Linked to Gene Expression in MLL-Rearranged AML.
- Author
-
Koldobskiy MA, Abante J, Jenkinson G, Pujadas E, Tetens A, Zhao F, Tryggvadottir R, Idrizi A, Reinisch A, Majeti R, Goutsias J, and Feinberg AP
- Subjects
- Epigenesis, Genetic, Histone-Lysine N-Methyltransferase genetics, Humans, Leukemia, Biphenotypic, Acute metabolism, Leukemia, Myeloid, Acute metabolism, Myeloid-Lymphoid Leukemia Protein genetics, Transcriptome, Translocation, Genetic, DNA Methylation, Gene Expression Regulation, Neoplastic, Leukemia, Biphenotypic, Acute genetics, Leukemia, Myeloid, Acute genetics
- Abstract
Translocations of the KMT2A (MLL) gene define a biologically distinct and clinically aggressive subtype of acute myeloid leukaemia (AML), marked by a characteristic gene expression profile and few cooperating mutations. Although dysregulation of the epigenetic landscape in this leukaemia is particularly interesting given the low mutation frequency, its comprehensive analysis using whole genome bisulphite sequencing (WGBS) has not been previously performed. Here we investigated epigenetic dysregulation in nine MLL-rearranged (MLL-r) AML samples by comparing them to six normal myeloid controls, using a computational method that encapsulates mean DNA methylation measurements along with analyses of methylation stochasticity. We discovered a dramatically altered epigenetic profile in MLL-r AML, associated with genome-wide hypomethylation and a markedly increased DNA methylation entropy reflecting an increasingly disordered epigenome. Methylation discordance mapped to key genes and regulatory elements that included bivalent promoters and active enhancers. Genes associated with significant changes in methylation stochasticity recapitulated known MLL-r AML expression signatures, suggesting a role for the altered epigenetic landscape in the transcriptional programme initiated by MLL translocations. Accordingly, we established statistically significant associations between discordances in methylation stochasticity and gene expression in MLL-r AML, thus providing a link between the altered epigenetic landscape and the phenotype.
- Published
- 2020
- Full Text
- View/download PDF
11. Ranking genomic features using an information-theoretic measure of epigenetic discordance.
- Author
-
Jenkinson G, Abante J, Koldobskiy MA, Feinberg AP, and Goutsias J
- Subjects
- DNA Methylation, Genome, Human, Humans, Neoplasms diagnosis, Neoplasms genetics, Probability, Epigenesis, Genetic, Epigenomics, Genomics
- Abstract
Background: Establishment and maintenance of DNA methylation throughout the genome is an important epigenetic mechanism that regulates gene expression whose disruption has been implicated in human diseases like cancer. It is therefore crucial to know which genes, or other genomic features of interest, exhibit significant discordance in DNA methylation between two phenotypes. We have previously proposed an approach for ranking genes based on methylation discordance within their promoter regions, determined by centering a window of fixed size at their transcription start sites. However, we cannot use this method to identify statistically significant genomic features and handle features of variable length and with missing data., Results: We present a new approach for computing the statistical significance of methylation discordance within genomic features of interest in single and multiple test/reference studies. We base the proposed method on a well-articulated hypothesis testing problem that produces p- and q-values for each genomic feature, which we then use to identify and rank features based on the statistical significance of their epigenetic dysregulation. We employ the information-theoretic concept of mutual information to derive a novel test statistic, which we can evaluate by computing Jensen-Shannon distances between the probability distributions of methylation in a test and a reference sample. We design the proposed methodology to simultaneously handle biological, statistical, and technical variability in the data, as well as variable feature lengths and missing data, thus enabling its wide-spread use on any list of genomic features. This is accomplished by estimating, from reference data, the null distribution of the test statistic as a function of feature length using generalized additive regression models. Differential assessment, using normal/cancer data from healthy fetal tissue and pediatric high-grade glioma patients, illustrates the potential of our approach to greatly facilitate the exploratory phases of clinically and biologically relevant methylation studies., Conclusions: The proposed approach provides the first computational tool for statistically testing and ranking genomic features of interest based on observed DNA methylation discordance in comparative studies that accounts, in a rigorous manner, for biological, statistical, and technical variability in methylation data, as well as for variability in feature length and for missing data.
- Published
- 2019
- Full Text
- View/download PDF
12. An information-theoretic approach to the modeling and analysis of whole-genome bisulfite sequencing data.
- Author
-
Jenkinson G, Abante J, Feinberg AP, and Goutsias J
- Subjects
- Base Sequence, Computer Simulation, CpG Islands genetics, DNA Methylation genetics, Entropy, Epigenesis, Genetic, Gene Ontology, Genome, Human, Humans, Lung Neoplasms genetics, Probability, Web Browser, Information Theory, Models, Theoretical, Statistics as Topic, Sulfites chemistry, Whole Genome Sequencing methods
- Abstract
Background: DNA methylation is a stable form of epigenetic memory used by cells to control gene expression. Whole genome bisulfite sequencing (WGBS) has emerged as a gold-standard experimental technique for studying DNA methylation by producing high resolution genome-wide methylation profiles. Statistical modeling and analysis is employed to computationally extract and quantify information from these profiles in an effort to identify regions of the genome that demonstrate crucial or aberrant epigenetic behavior. However, the performance of most currently available methods for methylation analysis is hampered by their inability to directly account for statistical dependencies between neighboring methylation sites, thus ignoring significant information available in WGBS reads., Results: We present a powerful information-theoretic approach for genome-wide modeling and analysis of WGBS data based on the 1D Ising model of statistical physics. This approach takes into account correlations in methylation by utilizing a joint probability model that encapsulates all information available in WGBS methylation reads and produces accurate results even when applied on single WGBS samples with low coverage. Using the Shannon entropy, our approach provides a rigorous quantification of methylation stochasticity in individual WGBS samples genome-wide. Furthermore, it utilizes the Jensen-Shannon distance to evaluate differences in methylation distributions between a test and a reference sample. Differential performance assessment using simulated and real human lung normal/cancer data demonstrate a clear superiority of our approach over DSS, a recently proposed method for WGBS data analysis. Critically, these results demonstrate that marginal methods become statistically invalid when correlations are present in the data., Conclusions: This contribution demonstrates clear benefits and the necessity of modeling joint probability distributions of methylation using the 1D Ising model of statistical physics and of quantifying methylation stochasticity using concepts from information theory. By employing this methodology, substantial improvement of DNA methylation analysis can be achieved by effectively taking into account the massive amount of statistical information available in WGBS data, which is largely ignored by existing methods.
- Published
- 2018
- Full Text
- View/download PDF
13. HiMMe: using genetic patterns as a proxy for genome assembly reliability assessment.
- Author
-
Abante J, Ghaffari N, Johnson CD, and Datta A
- Subjects
- Algorithms, Bayes Theorem, Reproducibility of Results, Genomics methods, Markov Chains
- Abstract
Background: The information content of genomes plays a crucial role in the existence and proper development of living organisms. Thus, tremendous effort has been dedicated to developing DNA sequencing technologies that provide a better understanding of the underlying mechanisms of cellular processes. Advances in the development of sequencing technology have made it possible to sequence genomes in a relatively fast and inexpensive way. However, as with any measurement technology, there is noise involved and this needs to be addressed to reach conclusions based on the resulting data. In addition, there are multiple intermediate steps and degrees of freedom when constructing genome assemblies that lead to ambiguous and inconsistent results among assemblers., Methods: Here we introduce HiMMe, an HMM-based tool that relies on genetic patterns to score genome assemblies. Through a Markov chain, the model is able to detect characteristic genetic patterns, while, by introducing emission probabilities, the noise involved in the process is taken into account. Prior knowledge can be used by training the model to fit a given organism or sequencing technology., Results: Our results show that the method presented is able to recognize patterns even with relatively small k-mer size choices and limited computational resources., Conclusions: Our methodology provides an individual quality metric per contig in addition to an overall genome assembly score, with a time complexity well below that of an aligner. Ultimately, HiMMe provides meaningful statistical insights that can be leveraged by researchers to better select contigs and genome assemblies for downstream analysis.
- Published
- 2017
- Full Text
- View/download PDF
14. An improved purification method for cytosolic malate dehydrogenase from several sources.
- Author
-
Domènech C, Abante JJ, Bozal FX, Mazo A, Cortés A, and Bozal J
- Subjects
- Animals, Chickens, Chromatography, Affinity, Chromatography, DEAE-Cellulose, Chromatography, High Pressure Liquid, Electrophoresis, Polyacrylamide Gel, Guinea Pigs, Isoelectric Focusing, Liver enzymology, Molecular Weight, Thigh enzymology, Cytosol enzymology, Malate Dehydrogenase isolation & purification
- Abstract
A new purification method for cytosolic malate dehydrogenases from several sources has been developed. The procedure, employing chromatographies on 5'AMP-Sepharose, DEAE-Sephacel and Blue-Sepharose, allows for a rapid isolation of the enzyme (approximately 40 hours), in large quantities, with good yields (45-54%). The specific activity of final preparations were around 1300 I.U./mg and were judged homogeneous by polyacrylamide gradient gel and sodium dodecyl sulfate polyacrylamide gel electrophoresis, high performance size exclusion chromatography and isoelectric focusing.
- Published
- 1988
- Full Text
- View/download PDF
15. Microheterogeneity of the malate dehydrogenase from several sources.
- Author
-
Domènech C, Abante J, Bozal FX, Mazo A, Cortés A, and Bozal J
- Subjects
- Animals, Chickens, Chromatography, Chromatography, Gel, Cytosol enzymology, Guinea Pigs, Isoelectric Focusing, Liver enzymology, Molecular Weight, Muscles enzymology, Protein Conformation, Malate Dehydrogenase isolation & purification
- Abstract
Different homogeneously purified cytosolic malate dehydrogenases gave, on isoelectric focusing, several active bands. The phenomenon could not be assigned to differences in their molecular weights or to alterations in the enzyme preparations during the purification procedure. Resolution of the multiple malate dehydrogenase active bands was achieved by chromatofocusing. The aged isolated subforms always yielded the original electrofocusing pattern. This fact suggests that conformational isomerism is a likely explanation for the charge heterogeneity of the enzymes studied.
- Published
- 1987
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.