163 results on '"Abegg, M."'
Search Results
2. Dominance and rarity in tree communities across the globe: Patterns, predictors and threats
- Author
-
Hordijk, I., Bialic‐Murphy, L., Lauber, T., Routh, D., Poorter, L., Rivers, M., ter Steege, H., Liang, J., Reich, P., de‐Miguel, S., Nabuurs, G.-J., Gamarra, J., Chen, H., Zhou, M., Wiser, S., Pretzsch, H., Paquette, A., Picard, N., Hérault, B., Bastin, J.-F., Alberti, G., Abegg, M., Adou Yao, Y., Almeyda Zambrano, A., Alvarado, B., Alvarez‐Davila, E., Alvarez‐Loayza, P., Alves, L., Ammer, C., Antón‐Fernández, C., Araujo‐Murakami, A., Arroyo, L., Avitabile, V., Aymard Corredor, G., Baker, T., Banki, O., Barroso, J., Bastian, M., Birigazzi, L., Birnbaum, P., Bitariho, R., Boeckx, P., Bongers, F., Bouriaud, O., Brancalion, P., Brandl, S., Brienen, R., Broadbent, E., Bruelheide, H., Bussotti, F., Gatti, R., Cesar, R., Cesljar, G., Chazdon, R., Chisholm, C., Cienciala, E., Clark, C., Clar, D., Colletta, G., Coomes, D., Valverde, F., Corral‐Rivas, J., Crim, P., Cumming, J., Dayanandan, S., de Gasper, A., Decuyper, M., Derroire, G., DeVries, B., Djordjevic, I., Iêda, A., Dourdain, A., Dolezal, J., Obiang, N., Enquist, B., Eyre, T., Fandohan, A., Fayle, T., Ferreira, L., Feldpausch, T., Finér, L., Fischer, M., Fletcher, C., Frizzera, L., Gianelle, D., Glick, H., Harris, D., Hector, A., Hemp, A., Hengeveld, G., Herbohn, J., Hillers, A., Honorio Coronado, E., Hui, C., Cho, H., Ibanez, T., Jung, I., Imai, N., Jagodzinski, A., Jaroszewicz, B., Johannsen, V., Joly, C., Jucker, T., Karminov, V., Kartawinata, K., Kearsley, E., Kenfack, D., Kennard, D., Kepfer‐Rojas, S., Keppel, G., Khan, M., Killeen, T., Kim, H., Kitayama, K., Köhl, M., Korjus, H., Kraxner, F., Laarmann, D., Lang, M., Lewis, S., Lu, H., Lukina, N., Maitner, B., Malhi, Y., Marcon, E., Marimon, B., Marimon‐Junior, B., Marshall, A., Martin, E., Martynenko, O., Meave, J., Melo‐Cruz, O., Mendoza, C., Merow, C., Miscicki, S., Mendoza, A., Moreno, V., Mukul, S., Mundhenk, P., Nava‐Miranda, M., Neill, D., Neldner, V., Nevenic, R., Ngugi, M., Niklaus, P., Oleksyn, J., Ontikov, P., Ortiz‐Malavasi, E., Pan, Y., Parada‐Gutierrez, A., Parfenova, E., Park, M., Parren, M., Parthasarathy, N., Peri, P., Pfautsch, S., Phillips, O., Piedade, M., Piotto, D., Pitman, N., Polo, I., Poulsen, A., Poulsen, J., Arevalo, F., Restrepo‐Correa, Z., Rodeghiero, M., Rolim, S., Roopsind, A., Rovero, F., Rutishauser, E., Saikia, P., Salas‐Eljatib, C., Schall, P., Shchepashchenko, D., Scherer‐Lorenzen, M., Schmid, B., Schöngart, J., Searle, E., Seben, V., Serra‐Diaz, J., Sheil, D., Shvidenko, A., Silva‐Espejo, J., Silveira, M., Singh, J., Sist, P., Slik, F., Sonké, B., Souza, A., Stereńczak, K., Svenning, J.-C., Svoboda, M., Swanepoel, B., Targhetta, N., Tchebakova, N., Thomas, R., Tikhonova, E., Umunay, P., Usoltsev, V., Valencia, R., Valladares, F., van der Plas, F., Van Do, T., Van Nuland, M., Martinez, R., Verbeeck, H., Viana, H., Vibrans, A., Vieira, S., von Gadow, K., Wang, H.-F., Watson, J., Werner, G., Wittmann, F., Wortel, V., Zagt, R., Zawila‐Niedzwiecki, T., Zhang, C., Zhao, X., Zhu, Z.-X., Zo‐Bi, I., Maynard, D., Crowther, T., Hordijk, I., Bialic‐Murphy, L., Lauber, T., Routh, D., Poorter, L., Rivers, M., ter Steege, H., Liang, J., Reich, P., de‐Miguel, S., Nabuurs, G.-J., Gamarra, J., Chen, H., Zhou, M., Wiser, S., Pretzsch, H., Paquette, A., Picard, N., Hérault, B., Bastin, J.-F., Alberti, G., Abegg, M., Adou Yao, Y., Almeyda Zambrano, A., Alvarado, B., Alvarez‐Davila, E., Alvarez‐Loayza, P., Alves, L., Ammer, C., Antón‐Fernández, C., Araujo‐Murakami, A., Arroyo, L., Avitabile, V., Aymard Corredor, G., Baker, T., Banki, O., Barroso, J., Bastian, M., Birigazzi, L., Birnbaum, P., Bitariho, R., Boeckx, P., Bongers, F., Bouriaud, O., Brancalion, P., Brandl, S., Brienen, R., Broadbent, E., Bruelheide, H., Bussotti, F., Gatti, R., Cesar, R., Cesljar, G., Chazdon, R., Chisholm, C., Cienciala, E., Clark, C., Clar, D., Colletta, G., Coomes, D., Valverde, F., Corral‐Rivas, J., Crim, P., Cumming, J., Dayanandan, S., de Gasper, A., Decuyper, M., Derroire, G., DeVries, B., Djordjevic, I., Iêda, A., Dourdain, A., Dolezal, J., Obiang, N., Enquist, B., Eyre, T., Fandohan, A., Fayle, T., Ferreira, L., Feldpausch, T., Finér, L., Fischer, M., Fletcher, C., Frizzera, L., Gianelle, D., Glick, H., Harris, D., Hector, A., Hemp, A., Hengeveld, G., Herbohn, J., Hillers, A., Honorio Coronado, E., Hui, C., Cho, H., Ibanez, T., Jung, I., Imai, N., Jagodzinski, A., Jaroszewicz, B., Johannsen, V., Joly, C., Jucker, T., Karminov, V., Kartawinata, K., Kearsley, E., Kenfack, D., Kennard, D., Kepfer‐Rojas, S., Keppel, G., Khan, M., Killeen, T., Kim, H., Kitayama, K., Köhl, M., Korjus, H., Kraxner, F., Laarmann, D., Lang, M., Lewis, S., Lu, H., Lukina, N., Maitner, B., Malhi, Y., Marcon, E., Marimon, B., Marimon‐Junior, B., Marshall, A., Martin, E., Martynenko, O., Meave, J., Melo‐Cruz, O., Mendoza, C., Merow, C., Miscicki, S., Mendoza, A., Moreno, V., Mukul, S., Mundhenk, P., Nava‐Miranda, M., Neill, D., Neldner, V., Nevenic, R., Ngugi, M., Niklaus, P., Oleksyn, J., Ontikov, P., Ortiz‐Malavasi, E., Pan, Y., Parada‐Gutierrez, A., Parfenova, E., Park, M., Parren, M., Parthasarathy, N., Peri, P., Pfautsch, S., Phillips, O., Piedade, M., Piotto, D., Pitman, N., Polo, I., Poulsen, A., Poulsen, J., Arevalo, F., Restrepo‐Correa, Z., Rodeghiero, M., Rolim, S., Roopsind, A., Rovero, F., Rutishauser, E., Saikia, P., Salas‐Eljatib, C., Schall, P., Shchepashchenko, D., Scherer‐Lorenzen, M., Schmid, B., Schöngart, J., Searle, E., Seben, V., Serra‐Diaz, J., Sheil, D., Shvidenko, A., Silva‐Espejo, J., Silveira, M., Singh, J., Sist, P., Slik, F., Sonké, B., Souza, A., Stereńczak, K., Svenning, J.-C., Svoboda, M., Swanepoel, B., Targhetta, N., Tchebakova, N., Thomas, R., Tikhonova, E., Umunay, P., Usoltsev, V., Valencia, R., Valladares, F., van der Plas, F., Van Do, T., Van Nuland, M., Martinez, R., Verbeeck, H., Viana, H., Vibrans, A., Vieira, S., von Gadow, K., Wang, H.-F., Watson, J., Werner, G., Wittmann, F., Wortel, V., Zagt, R., Zawila‐Niedzwiecki, T., Zhang, C., Zhao, X., Zhu, Z.-X., Zo‐Bi, I., Maynard, D., and Crowther, T.
- Abstract
Aim Ecological and anthropogenic factors shift the abundances of dominant and rare tree species within local forest communities, thus affecting species composition and ecosystem functioning. To inform forest and conservation management it is important to understand the drivers of dominance and rarity in local tree communities. We answer the following research questions: (1) What are the patterns of dominance and rarity in tree communities? (2) Which ecological and anthropogenic factors predict these patterns? And (3) what is the extinction risk of locally dominant and rare tree species? Location Global. Time period 1990–2017. Major taxa studied Trees. Methods We used 1.2 million forest plots and quantified local tree dominance as the relative plot basal area of the single most dominant species and local rarity as the percentage of species that contribute together to the least 10% of plot basal area. We mapped global community dominance and rarity using machine learning models and evaluated the ecological and anthropogenic predictors with linear models. Extinction risk, for example threatened status, of geographically widespread dominant and rare species was evaluated. Results Community dominance and rarity show contrasting latitudinal trends, with boreal forests having high levels of dominance and tropical forests having high levels of rarity. Increasing annual precipitation reduces community dominance, probably because precipitation is related to an increase in tree density and richness. Additionally, stand age is positively related to community dominance, due to stem diameter increase of the most dominant species. Surprisingly, we find that locally dominant and rare species, which are geographically widespread in our data, have an equally high rate of elevated extinction due to declining populations through large-scale land degradation. Main conclusions By linking patterns and predictors of community dominance and rarity to extinction risk, our results suggest tha
- Published
- 2024
- Full Text
- View/download PDF
3. Global patterns and environmental drivers of forest functional composition
- Author
-
Bouchard, E., Searle, E.B., Drapeau, P., Liang, J., Gamarra, J.G.P., Abegg, M., Alberti, G., Zambrano, A.A., Alvarez‐Davila, E., Alves, L.F., Avitabile, V., Aymard, G., Bastin, J.‐F., Birnbaum, P., Bongers, F., Bouriaud, O., Brancalion, P., Broadbent, E., Bussotti, F., Gatti, R.C., Češljar, G., Chisholm, C., Cienciala, E., Clark, C. J., Corral‐Rivas, J.J., Crowther, T.W., Dayanandan, S., Decuyper, M., de Gasper, A.L., de‐Miguel, S., Derroire, G., DeVries, B., Djordjević, I., Van Do, T., Dolezal, J., Fayle, T.M., Fridman, J., Frizzera, L., Gianelle, D., Hemp, A., Hérault, B., Herold, M., Imai, N., Jagodziński, A.M., Jaroszewicz, B., Jucker, T., Kepfer‐Rojas, S., Keppel, G., Khan, M.L., Kim, H..S., Korjus, H., Kraxner, Fl., Laarmann, D., Lewis, S., Lu, H., Maitner, B.S., Marcon, E., Marshall, A.R., Mukul, S.A., Nabuurs, G.‐J., Nava‐Miranda, M.G., Parfenova, E.I., Park, M., Peri, P.L., Pfautsch, S., Phillips, O.L., Piedade, M.T.F., Piotto, D., Poulsen, J.R., Poulsen, A.D., Pretzsch, H., Reich, P.B., Rodeghiero, M., Rolim, S., Rovero, F., Saikia, P., Salas‐Eljatib, C., Schall, P., Shchepashchenko, D., Schöngart, J., Šebeň, V., Sist, P., Slik, F., Souza, A.F., Stereńczak, K., Svoboda, M., Tchebakova, N.M., ter Steege, H., Tikhonova, E.V., Usoltsev, V.A., Valladares, F., Viana, H., Vibrans, A.C., Wang, H.‐F.., Westerlund, B., Wiser, S.K., Wittmann, F., Wortel, V., Zawiła‐Niedźwiecki, T., Zhou, M., Zhu, Z.‐X., Zo‐Bi, I.C., Paquette, A., Bouchard, E., Searle, E.B., Drapeau, P., Liang, J., Gamarra, J.G.P., Abegg, M., Alberti, G., Zambrano, A.A., Alvarez‐Davila, E., Alves, L.F., Avitabile, V., Aymard, G., Bastin, J.‐F., Birnbaum, P., Bongers, F., Bouriaud, O., Brancalion, P., Broadbent, E., Bussotti, F., Gatti, R.C., Češljar, G., Chisholm, C., Cienciala, E., Clark, C. J., Corral‐Rivas, J.J., Crowther, T.W., Dayanandan, S., Decuyper, M., de Gasper, A.L., de‐Miguel, S., Derroire, G., DeVries, B., Djordjević, I., Van Do, T., Dolezal, J., Fayle, T.M., Fridman, J., Frizzera, L., Gianelle, D., Hemp, A., Hérault, B., Herold, M., Imai, N., Jagodziński, A.M., Jaroszewicz, B., Jucker, T., Kepfer‐Rojas, S., Keppel, G., Khan, M.L., Kim, H..S., Korjus, H., Kraxner, Fl., Laarmann, D., Lewis, S., Lu, H., Maitner, B.S., Marcon, E., Marshall, A.R., Mukul, S.A., Nabuurs, G.‐J., Nava‐Miranda, M.G., Parfenova, E.I., Park, M., Peri, P.L., Pfautsch, S., Phillips, O.L., Piedade, M.T.F., Piotto, D., Poulsen, J.R., Poulsen, A.D., Pretzsch, H., Reich, P.B., Rodeghiero, M., Rolim, S., Rovero, F., Saikia, P., Salas‐Eljatib, C., Schall, P., Shchepashchenko, D., Schöngart, J., Šebeň, V., Sist, P., Slik, F., Souza, A.F., Stereńczak, K., Svoboda, M., Tchebakova, N.M., ter Steege, H., Tikhonova, E.V., Usoltsev, V.A., Valladares, F., Viana, H., Vibrans, A.C., Wang, H.‐F.., Westerlund, B., Wiser, S.K., Wittmann, F., Wortel, V., Zawiła‐Niedźwiecki, T., Zhou, M., Zhu, Z.‐X., Zo‐Bi, I.C., and Paquette, A.
- Abstract
Aim To determine the relationships between the functional trait composition of forest communities and environmental gradients across scales and biomes and the role of species relative abundances in these relationships. Location Global. Time period Recent. Major taxa studied Trees. Methods We integrated species abundance records from worldwide forest inventories and associated functional traits (wood density, specific leaf area and seed mass) to obtain a data set of 99,953 to 149,285 plots (depending on the trait) spanning all forested continents. We computed community-weighted and unweighted means of trait values for each plot and related them to three broad environmental gradients and their interactions (energy availability, precipitation and soil properties) at two scales (global and biomes). Results Our models explained up to 60% of the variance in trait distribution. At global scale, the energy gradient had the strongest influence on traits. However, within-biome models revealed different relationships among biomes. Notably, the functional composition of tropical forests was more influenced by precipitation and soil properties than energy availability, whereas temperate forests showed the opposite pattern. Depending on the trait studied, response to gradients was more variable and proportionally weaker in boreal forests. Community unweighted means were better predicted than weighted means for almost all models. Main conclusions Worldwide, trees require a large amount of energy (following latitude) to produce dense wood and seeds, while leaves with large surface to weight ratios are concentrated in temperate forests. However, patterns of functional composition within-biome differ from global patterns due to biome specificities such as the presence of conifers or unique combinations of climatic and soil properties. We recommend assessing the sensitivity of tree functional traits to environmental changes in their geographic context. Furthermore, at a given site, th
- Published
- 2024
- Full Text
- View/download PDF
4. Positive feedbacks and alternative stable states in forest leaf types
- Author
-
Zou, Y., Zohner, C., Averill, C., Ma, H., Merder, J., Berdugo, M., Bialic-Murphy, L., Mo, L., Brun, P., Zimmermann, N., Liang, J., de-Miguel, S., Nabuurs, G.-J., Reich, P., Niinements, U., Dahlgren, J., Kändler, G., Ratcliffe, S., Ruiz-Benito, P., de Zavala, M., Abegg, M., Adou Yao, Y., Alberti, G., Almeyda Zambrano, A., Alvarado, B., Alvarez-Dávila, E., Alvarez-Loayza, P., Alves, L., Ammer, C., Antón-Fernández, C., Araujo-Murakami, A., Arroyo, L., Avitabile, V., Aymard, G., Baker, T., Bałazy, R., Banki, O., Barroso, J., Bastian, M., Bastin, J.-F., Birigazzi, L., Birnbaum, P., Bitariho, R., Boeckx, P., Bongers, F., Bouriaud, O., Brancalion, P., Brandl, S., Brearley, F., Brienen, R., Broadbent, E., Bruelheide, H., Bussotti, F., Gatti, R., César, R., Cesljar, G., Chazdon, R., Chen, H., Chisholm, C., Cho, H., Cienciala, E., Clark, C., Clark, D., Colletta, G., Coomes, D., Valverde, F., Corral-Rivas, J., Crim, P., Cumming, J., Dayanandan, S., de Gasper, A., Decuyper, M., Derroire, G., DeVries, B., Djordjevic, I., Dolezal, J., Dourdain, A., Obiang, N., Enquist, B., Eyre, T., Fandohan, A., Fayle, T., Feldpausch, T., Ferreira, L., Finér, L., Fischer, M., Fletcher, C., Fridman, J., Frizzera, L., Gamarra, J., Gianelle, D., Glick, H., Harris, D., Hector, A., Hemp, A., Hengeveld, G., Hérault, B., Herbohn, J., Herold, M., Hillers, A., Honorio Coronado, E., Hui, C., Ibanez, T., Iêda, A., Imai, N., Jagodziński, A., Jaroszewicz, B., Johannsen, V., Joly, C., Jucker, T., Jung, I., Karminov, V., Kartawinata, K., Kearsley, E., Kenfack, D., Kennard, D., Kepfer-Rojas, S., Keppel, G., Khan, M., Killeen, T., Kim, H., Kitayama, K., Köhl, M., Korjus, H., Kraxner, F., Laarmann, D., Lang, M., Lewis, S., Lu, H., Lukina, N., Maitner, B., Malhi, Y., Marcon, E., Marimon, B., Marimon-Junior, B., Marshall, A., Martin, E., Kucher, D., Meave, J., Melo-Cruz, O., Mendoza, C., Merow, C., Mendoza, A., Moreno, V., Mukul, S., Mundhenk, P., Nava-Miranda, M., Neill, D., Neldner, V., Nevenic, R., Ngugi, M., Niklaus, P., Oleksyn, J., Ontikov, P., Ortiz-Malavasi, E., Pan, Y., Paquette, A., Parada-Gutierrez, A., Parfenova, E., Park, M., Parren, M., Parthasarathy, N., Peri, P., Pfautsch, S., Phillips, O., Picard, N., Piedade, M., Piotto, D., Pitman, N., Polo, I., Poorter, L., Poulsen, A., Poulsen, J., Pretzsch, H., Arevalo, F., Restrepo-Correa, Z., Rodeghiero, M., Rolim, S., Roopsind, A., Rovero, F., Rutishauser, E., Saikia, P., Salas-Eljatib, C., Saner, P., Schall, P., Schelhaas, M., Shchepashchenko, D., Scherer-Lorenzen, M., Schmid, B., Schöngart, J., Searle, E., Seben, V., Serra-Diaz, J., Sheil, D., Shvidenko, A., Silva-Espejo, J., Silveira, M., Singh, J., Sist, P., Slik, F., Sonké, B., Souza, A., Miscicki, S., Stereńczak, K., Svenning, J., Svoboda, M., Swanepoel, B., Targhetta, N., Tchebakova, N., ter Steege, H., Thomas, R., Tikhonova, E., Umunay, P., Usoltsev, V., Valencia, R., Valladares, F., van der Plas, F., Van Do, T., van Nuland, M., Vasquez, R., Verbeeck, H., Viana, H., Vibrans, A., Vieira, S., von Gadow, K., Wang, H., Watson, J., Werner, G., Westerlund, B., Wiser, S., Wittmann, F., Woell, H., Wortel, V., Zagt, R., Zawiła-Niedźwiecki, T., Zhang, C., Zhao, X., Zhou, M., Zhu, Z., Zo-Bi, I., Crowther, T., Zou, Y., Zohner, C., Averill, C., Ma, H., Merder, J., Berdugo, M., Bialic-Murphy, L., Mo, L., Brun, P., Zimmermann, N., Liang, J., de-Miguel, S., Nabuurs, G.-J., Reich, P., Niinements, U., Dahlgren, J., Kändler, G., Ratcliffe, S., Ruiz-Benito, P., de Zavala, M., Abegg, M., Adou Yao, Y., Alberti, G., Almeyda Zambrano, A., Alvarado, B., Alvarez-Dávila, E., Alvarez-Loayza, P., Alves, L., Ammer, C., Antón-Fernández, C., Araujo-Murakami, A., Arroyo, L., Avitabile, V., Aymard, G., Baker, T., Bałazy, R., Banki, O., Barroso, J., Bastian, M., Bastin, J.-F., Birigazzi, L., Birnbaum, P., Bitariho, R., Boeckx, P., Bongers, F., Bouriaud, O., Brancalion, P., Brandl, S., Brearley, F., Brienen, R., Broadbent, E., Bruelheide, H., Bussotti, F., Gatti, R., César, R., Cesljar, G., Chazdon, R., Chen, H., Chisholm, C., Cho, H., Cienciala, E., Clark, C., Clark, D., Colletta, G., Coomes, D., Valverde, F., Corral-Rivas, J., Crim, P., Cumming, J., Dayanandan, S., de Gasper, A., Decuyper, M., Derroire, G., DeVries, B., Djordjevic, I., Dolezal, J., Dourdain, A., Obiang, N., Enquist, B., Eyre, T., Fandohan, A., Fayle, T., Feldpausch, T., Ferreira, L., Finér, L., Fischer, M., Fletcher, C., Fridman, J., Frizzera, L., Gamarra, J., Gianelle, D., Glick, H., Harris, D., Hector, A., Hemp, A., Hengeveld, G., Hérault, B., Herbohn, J., Herold, M., Hillers, A., Honorio Coronado, E., Hui, C., Ibanez, T., Iêda, A., Imai, N., Jagodziński, A., Jaroszewicz, B., Johannsen, V., Joly, C., Jucker, T., Jung, I., Karminov, V., Kartawinata, K., Kearsley, E., Kenfack, D., Kennard, D., Kepfer-Rojas, S., Keppel, G., Khan, M., Killeen, T., Kim, H., Kitayama, K., Köhl, M., Korjus, H., Kraxner, F., Laarmann, D., Lang, M., Lewis, S., Lu, H., Lukina, N., Maitner, B., Malhi, Y., Marcon, E., Marimon, B., Marimon-Junior, B., Marshall, A., Martin, E., Kucher, D., Meave, J., Melo-Cruz, O., Mendoza, C., Merow, C., Mendoza, A., Moreno, V., Mukul, S., Mundhenk, P., Nava-Miranda, M., Neill, D., Neldner, V., Nevenic, R., Ngugi, M., Niklaus, P., Oleksyn, J., Ontikov, P., Ortiz-Malavasi, E., Pan, Y., Paquette, A., Parada-Gutierrez, A., Parfenova, E., Park, M., Parren, M., Parthasarathy, N., Peri, P., Pfautsch, S., Phillips, O., Picard, N., Piedade, M., Piotto, D., Pitman, N., Polo, I., Poorter, L., Poulsen, A., Poulsen, J., Pretzsch, H., Arevalo, F., Restrepo-Correa, Z., Rodeghiero, M., Rolim, S., Roopsind, A., Rovero, F., Rutishauser, E., Saikia, P., Salas-Eljatib, C., Saner, P., Schall, P., Schelhaas, M., Shchepashchenko, D., Scherer-Lorenzen, M., Schmid, B., Schöngart, J., Searle, E., Seben, V., Serra-Diaz, J., Sheil, D., Shvidenko, A., Silva-Espejo, J., Silveira, M., Singh, J., Sist, P., Slik, F., Sonké, B., Souza, A., Miscicki, S., Stereńczak, K., Svenning, J., Svoboda, M., Swanepoel, B., Targhetta, N., Tchebakova, N., ter Steege, H., Thomas, R., Tikhonova, E., Umunay, P., Usoltsev, V., Valencia, R., Valladares, F., van der Plas, F., Van Do, T., van Nuland, M., Vasquez, R., Verbeeck, H., Viana, H., Vibrans, A., Vieira, S., von Gadow, K., Wang, H., Watson, J., Werner, G., Westerlund, B., Wiser, S., Wittmann, F., Woell, H., Wortel, V., Zagt, R., Zawiła-Niedźwiecki, T., Zhang, C., Zhao, X., Zhou, M., Zhu, Z., Zo-Bi, I., and Crowther, T.
- Abstract
The emergence of alternative stable states in forest systems has significant implications for the functioning and structure of the terrestrial biosphere, yet empirical evidence remains scarce. Here, we combine global forest biodiversity observations and simulations to test for alternative stable states in the presence of evergreen and deciduous forest types. We reveal a bimodal distribution of forest leaf types across temperate regions of the Northern Hemisphere that cannot be explained by the environment alone, suggesting signatures of alternative forest states. Moreover, we empirically demonstrate the existence of positive feedbacks in tree growth, recruitment and mortality, with trees having 4–43% higher growth rates, 14–17% higher survival rates and 4–7 times higher recruitment rates when they are surrounded by trees of their own leaf type. Simulations show that the observed positive feedbacks are necessary and sufficient to generate alternative forest states, which also lead to dependency on history (hysteresis) during ecosystem transition from evergreen to deciduous forests and vice versa. We identify hotspots of bistable forest types in evergreen-deciduous ecotones, which are likely driven by soil-related positive feedbacks. These findings are integral to predicting the distribution of forest biomes, and aid to our understanding of biodiversity, carbon turnover, and terrestrial climate feedbacks.
- Published
- 2024
- Full Text
- View/download PDF
5. The global biogeography of tree leaf form and habit
- Author
-
Ma, H., Crowther, T., Mo, L., Maynard, D., Renner, S., van den Hoogen, J., Zou, Y., Liang, J., de-Miguel, S., Nabuurs, G.-J., Reich, P., Niinemets, Ü., Abegg, M., Adou Yao, Y., Alberti, G., Almeyda Zambrano, A., Alvarado, B., Alvarez-Dávila, E., Alvarez-Loayza, P., Alves, L., Ammer, C., Antón-Fernández, C., Araujo-Murakami, A., Arroyo, L., Avitabile, V., Aymard, G., Baker, T., Bałazy, R., Banki, O., Barroso, J., Bastian, M., Bastin, J.-F., Birigazzi, L., Birnbaum, P., Bitariho, R., Boeckx, P., Bongers, F., Bouriaud, O., Brancalion, P., Brandl, S., Brearley, F., Brienen, R., Broadbent, E., Bruelheide, H., Bussotti, F., Cazzolla Gatti, R., César, R., Cesljar, G., Chazdon, R., Chen, H., Chisholm, C., Cho, H., Cienciala, E., Clark, C., Clark, D., Colletta, G., Coomes, D., Valverde, F., Corral-Rivas, J., Crim, P., Cumming, J., Dayanandan, S., de Gasper, A., Decuyper, M., Derroire, G., DeVries, B., Djordjevic, I., Dolezal, J., Dourdain, A., Engone Obiang, N., Enquist, B., Eyre, T., Fandohan, A., Fayle, T., Feldpausch, T., Ferreira, L., Finér, L., Fischer, M., Fletcher, C., Fridman, J., Frizzera, L., Gamarra, J., Gianelle, D., Glick, H., Harris, D., Hector, A., Hemp, A., Hengeveld, G., Hérault, B., Herbohn, J., Herold, M., Hillers, A., Honorio Coronado, E., Hui, C., Ibanez, T., Amaral, I., Imai, N., Jagodziński, A., Jaroszewicz, B., Johannsen, V., Joly, C., Jucker, T., Jung, I., Karminov, V., Kartawinata, K., Kearsley, E., Kenfack, D., Kennard, D., Kepfer-Rojas, S., Keppel, G., Khan, M., Killeen, T., Kim, H., Kitayama, K., Köhl, M., Korjus, H., Kraxner, F., Kucher, D., Laarmann, D., Lang, M., Lewis, S., Lu, H., Lukina, N., Maitner, B., Malhi, Y., Marcon, E., Marimon, B., Marimon-Junior, B., Marshall, A., Martin, E., Meave, J., Melo-Cruz, O., Mendoza, C., Merow, C., Monteagudo Mendoza, A., Moreno, V., Mukul, S., Mundhenk, P., Nava-Miranda, M., Neill, D., Neldner, V., Nevenic, R., Ngugi, M., Niklaus, P., Oleksyn, J., Ontikov, P., Ortiz-Malavasi, E., Pan, Y., Paquette, A., Parada-Gutierrez, A., Parfenova, E., Park, M., Parren, M., Parthasarathy, N., Peri, P., Pfautsch, S., Phillips, O., Picard, N., Piedade, M., Piotto, D., Pitman, N., Mendoza-Polo, I., Poulsen, A., Poulsen, J., Pretzsch, H., Ramirez Arevalo, F., Restrepo-Correa, Z., Rodeghiero, M., Rolim, S., Roopsind, A., Rovero, F., Rutishauser, E., Saikia, P., Salas-Eljatib, C., Saner, P., Schall, P., Schelhaas, M.-J., Shchepashchenko, D., Scherer-Lorenzen, M., Schmid, B., Schöngart, J., Searle, E., Seben, V., Serra-Diaz, J., Sheil, D., Shvidenko, A., Silva-Espejo, J., Silveira, M., Singh, J., Sist, P., Slik, F., Sonké, B., Souza, A., Miścicki, S., Stereńczak, K., Svenning, J.-C., Svoboda, M., Swanepoel, B., Targhetta, N., Tchebakova, N., ter Steege, H., Thomas, R., Tikhonova, E., Umunay, P., Usoltsev, V., Valencia, R., Valladares, F., van der Plas, F., Van Do, T., van Nuland, M., Vasquez, R., Verbeeck, H., Viana, H., Vibrans, A., Vieira, S., von Gadow, K., Wang, H.-F., Watson, J., Werner, G., Westerlund, B., Wiser, S., Wittmann, F., Woell, H., Wortel, V., Zagt, R., Zawiła-Niedźwiecki, T., Zhang, C., Zhao, X., Zhou, M., Zhu, Z.-X., Zo-Bi, I., Zohner, C., Ma, H., Crowther, T., Mo, L., Maynard, D., Renner, S., van den Hoogen, J., Zou, Y., Liang, J., de-Miguel, S., Nabuurs, G.-J., Reich, P., Niinemets, Ü., Abegg, M., Adou Yao, Y., Alberti, G., Almeyda Zambrano, A., Alvarado, B., Alvarez-Dávila, E., Alvarez-Loayza, P., Alves, L., Ammer, C., Antón-Fernández, C., Araujo-Murakami, A., Arroyo, L., Avitabile, V., Aymard, G., Baker, T., Bałazy, R., Banki, O., Barroso, J., Bastian, M., Bastin, J.-F., Birigazzi, L., Birnbaum, P., Bitariho, R., Boeckx, P., Bongers, F., Bouriaud, O., Brancalion, P., Brandl, S., Brearley, F., Brienen, R., Broadbent, E., Bruelheide, H., Bussotti, F., Cazzolla Gatti, R., César, R., Cesljar, G., Chazdon, R., Chen, H., Chisholm, C., Cho, H., Cienciala, E., Clark, C., Clark, D., Colletta, G., Coomes, D., Valverde, F., Corral-Rivas, J., Crim, P., Cumming, J., Dayanandan, S., de Gasper, A., Decuyper, M., Derroire, G., DeVries, B., Djordjevic, I., Dolezal, J., Dourdain, A., Engone Obiang, N., Enquist, B., Eyre, T., Fandohan, A., Fayle, T., Feldpausch, T., Ferreira, L., Finér, L., Fischer, M., Fletcher, C., Fridman, J., Frizzera, L., Gamarra, J., Gianelle, D., Glick, H., Harris, D., Hector, A., Hemp, A., Hengeveld, G., Hérault, B., Herbohn, J., Herold, M., Hillers, A., Honorio Coronado, E., Hui, C., Ibanez, T., Amaral, I., Imai, N., Jagodziński, A., Jaroszewicz, B., Johannsen, V., Joly, C., Jucker, T., Jung, I., Karminov, V., Kartawinata, K., Kearsley, E., Kenfack, D., Kennard, D., Kepfer-Rojas, S., Keppel, G., Khan, M., Killeen, T., Kim, H., Kitayama, K., Köhl, M., Korjus, H., Kraxner, F., Kucher, D., Laarmann, D., Lang, M., Lewis, S., Lu, H., Lukina, N., Maitner, B., Malhi, Y., Marcon, E., Marimon, B., Marimon-Junior, B., Marshall, A., Martin, E., Meave, J., Melo-Cruz, O., Mendoza, C., Merow, C., Monteagudo Mendoza, A., Moreno, V., Mukul, S., Mundhenk, P., Nava-Miranda, M., Neill, D., Neldner, V., Nevenic, R., Ngugi, M., Niklaus, P., Oleksyn, J., Ontikov, P., Ortiz-Malavasi, E., Pan, Y., Paquette, A., Parada-Gutierrez, A., Parfenova, E., Park, M., Parren, M., Parthasarathy, N., Peri, P., Pfautsch, S., Phillips, O., Picard, N., Piedade, M., Piotto, D., Pitman, N., Mendoza-Polo, I., Poulsen, A., Poulsen, J., Pretzsch, H., Ramirez Arevalo, F., Restrepo-Correa, Z., Rodeghiero, M., Rolim, S., Roopsind, A., Rovero, F., Rutishauser, E., Saikia, P., Salas-Eljatib, C., Saner, P., Schall, P., Schelhaas, M.-J., Shchepashchenko, D., Scherer-Lorenzen, M., Schmid, B., Schöngart, J., Searle, E., Seben, V., Serra-Diaz, J., Sheil, D., Shvidenko, A., Silva-Espejo, J., Silveira, M., Singh, J., Sist, P., Slik, F., Sonké, B., Souza, A., Miścicki, S., Stereńczak, K., Svenning, J.-C., Svoboda, M., Swanepoel, B., Targhetta, N., Tchebakova, N., ter Steege, H., Thomas, R., Tikhonova, E., Umunay, P., Usoltsev, V., Valencia, R., Valladares, F., van der Plas, F., Van Do, T., van Nuland, M., Vasquez, R., Verbeeck, H., Viana, H., Vibrans, A., Vieira, S., von Gadow, K., Wang, H.-F., Watson, J., Werner, G., Westerlund, B., Wiser, S., Wittmann, F., Woell, H., Wortel, V., Zagt, R., Zawiła-Niedźwiecki, T., Zhang, C., Zhao, X., Zhou, M., Zhu, Z.-X., Zo-Bi, I., and Zohner, C.
- Abstract
Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17-34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling.
- Published
- 2023
- Full Text
- View/download PDF
6. Integrated global assessment of the natural forest carbon potential
- Author
-
Mo, L., Zohner, C., Reich, P., Liang, J., de Miguel, S., Nabuurs, G., Renner, S., van den Hoogen, J., Araza, A., Herold, M., Mirzagholi, L., Ma, H., Averill, C., Phillips, O., Gamarra, J., Hordijk, I., Routh, D., Abegg, M., Adou Yao, Y., Alberti, G., Almeyda Zambrano, A., Alvarado, B., Alvarez-Dávila, E., Alvarez-Loayza, P., Alves, L., Amaral, I., Ammer, C., Antón-Fernández, C., Araujo-Murakami, A., Arroyo, L., Avitabile, V., Aymard, G., Baker, T., Bałazy, R., Banki, O., Barroso, J., Bastian, M., Bastin, J., Birigazzi, L., Birnbaum, P., Bitariho, R., Boeckx, P., Bongers, F., Bouriaud, O., Brancalion, P., Brandl, S., Brearley, F., Brienen, R., Broadbent, E., Bruelheide, H., Bussotti, F., Cazzolla Gatti, R., César, R., Cesljar, G., Chazdon, R., Chen, H., Chisholm, C., Cho, H., Cienciala, E., Clark, C., Clark, D., Colletta, G., Coomes, D., Cornejo Valverde, F., Corral-Rivas, J., Crim, P., Cumming, J., Dayanandan, S., de Gasper, A., Decuyper, M., Derroire, G., DeVries, B., Djordjevic, I., Dolezal, J., Dourdain, A., Engone Obiang, N., Enquist, B., Eyre, T., Fandohan, A., Fayle, T., Feldpausch, T., Ferreira, L., Finér, L., Fischer, M., Fletcher, C., Frizzera, L., Gianelle, D., Glick, H., Harris, D., Hector, A., Hemp, A., Hengeveld, G., Hérault, B., Herbohn, J., Hillers, A., Honorio Coronado, E., Hui, C., Ibanez, T., Imai, N., Jagodziński, A., Jaroszewicz, B., Johannsen, V., Joly, C., Jucker, T., Jung, I., Karminov, V., Kartawinata, K., Kearsley, E., Kenfack, D., Kennard, D., Kepfer-Rojas, S., Keppel, G., Khan, M., Killeen, T., Kim, H., Kitayama, K., Köhl, M., Korjus, H., Kraxner, F., Kucher, D., Laarmann, D., Lang, M., Lu, H., Lukina, N., Maitner, B., Malhi, Y., Marcon, E., Marimon, B., Marimon-Junior, B., Marshall, A., Martin, E., Meave, J., Melo-Cruz, O., Mendoza, C., Mendoza-Polo, I., Miscicki, S., Merow, C., Monteagudo Mendoza, A., Moreno, V., Mukul, S., Mundhenk, P., Nava-Miranda, M., Neill, D., Neldner, V., Nevenic, R., Ngugi, M., Niklaus, P., Oleksyn, J., Ontikov, P., Ortiz-Malavasi, E., Pan, Y., Paquette, A., Parada-Gutierrez, A., Parfenova, E., Park, M., Parren, M., Parthasarathy, N., Peri, P., Pfautsch, S., Picard, N., Piedade, M., Piotto, D., Pitman, N., Poulsen, A., Poulsen, J., Pretzsch, H., Ramirez Arevalo, F., Restrepo-Correa, Z., Rodeghiero, M., Rolim, S., Roopsind, A., Rovero, F., Rutishauser, E., Saikia, P., Salas-Eljatib, C., Saner, P., Schall, P., Schelhaas, M., Shchepashchenko, D., Scherer-Lorenzen, M., Schmid, B., Schöngart, J., Searle, E., Seben, V., Serra-Diaz, J., Sheil, D., Shvidenko, A., Silva-Espejo, J., Silveira, M., Singh, J., Sist, P., Slik, F., Sonké, B., Souza, A., Stereńczak, K., Svenning, J., Svoboda, M., Swanepoel, B., Targhetta, N., Tchebakova, N., ter Steege, H., Thomas, R., Tikhonova, E., Umunay, P., Usoltsev, V., Valencia, R., Valladares, F., van der Plas, F., Van Do, T., van Nuland, M., Vasquez, R., Verbeeck, H., Viana, H., Vibrans, A., Vieira, S., von Gadow, K., Wang, H., Watson, J., Werner, G., Wiser, S., Wittmann, F., Woell, H., Wortel, V., Zagt, R., Zawiła-Niedźwiecki, T., Zhang, C., Zhao, X., Zhou, M., Zhu, Z., Zo-Bi, I., Gann, G., Crowther, T., Mo, L., Zohner, C., Reich, P., Liang, J., de Miguel, S., Nabuurs, G., Renner, S., van den Hoogen, J., Araza, A., Herold, M., Mirzagholi, L., Ma, H., Averill, C., Phillips, O., Gamarra, J., Hordijk, I., Routh, D., Abegg, M., Adou Yao, Y., Alberti, G., Almeyda Zambrano, A., Alvarado, B., Alvarez-Dávila, E., Alvarez-Loayza, P., Alves, L., Amaral, I., Ammer, C., Antón-Fernández, C., Araujo-Murakami, A., Arroyo, L., Avitabile, V., Aymard, G., Baker, T., Bałazy, R., Banki, O., Barroso, J., Bastian, M., Bastin, J., Birigazzi, L., Birnbaum, P., Bitariho, R., Boeckx, P., Bongers, F., Bouriaud, O., Brancalion, P., Brandl, S., Brearley, F., Brienen, R., Broadbent, E., Bruelheide, H., Bussotti, F., Cazzolla Gatti, R., César, R., Cesljar, G., Chazdon, R., Chen, H., Chisholm, C., Cho, H., Cienciala, E., Clark, C., Clark, D., Colletta, G., Coomes, D., Cornejo Valverde, F., Corral-Rivas, J., Crim, P., Cumming, J., Dayanandan, S., de Gasper, A., Decuyper, M., Derroire, G., DeVries, B., Djordjevic, I., Dolezal, J., Dourdain, A., Engone Obiang, N., Enquist, B., Eyre, T., Fandohan, A., Fayle, T., Feldpausch, T., Ferreira, L., Finér, L., Fischer, M., Fletcher, C., Frizzera, L., Gianelle, D., Glick, H., Harris, D., Hector, A., Hemp, A., Hengeveld, G., Hérault, B., Herbohn, J., Hillers, A., Honorio Coronado, E., Hui, C., Ibanez, T., Imai, N., Jagodziński, A., Jaroszewicz, B., Johannsen, V., Joly, C., Jucker, T., Jung, I., Karminov, V., Kartawinata, K., Kearsley, E., Kenfack, D., Kennard, D., Kepfer-Rojas, S., Keppel, G., Khan, M., Killeen, T., Kim, H., Kitayama, K., Köhl, M., Korjus, H., Kraxner, F., Kucher, D., Laarmann, D., Lang, M., Lu, H., Lukina, N., Maitner, B., Malhi, Y., Marcon, E., Marimon, B., Marimon-Junior, B., Marshall, A., Martin, E., Meave, J., Melo-Cruz, O., Mendoza, C., Mendoza-Polo, I., Miscicki, S., Merow, C., Monteagudo Mendoza, A., Moreno, V., Mukul, S., Mundhenk, P., Nava-Miranda, M., Neill, D., Neldner, V., Nevenic, R., Ngugi, M., Niklaus, P., Oleksyn, J., Ontikov, P., Ortiz-Malavasi, E., Pan, Y., Paquette, A., Parada-Gutierrez, A., Parfenova, E., Park, M., Parren, M., Parthasarathy, N., Peri, P., Pfautsch, S., Picard, N., Piedade, M., Piotto, D., Pitman, N., Poulsen, A., Poulsen, J., Pretzsch, H., Ramirez Arevalo, F., Restrepo-Correa, Z., Rodeghiero, M., Rolim, S., Roopsind, A., Rovero, F., Rutishauser, E., Saikia, P., Salas-Eljatib, C., Saner, P., Schall, P., Schelhaas, M., Shchepashchenko, D., Scherer-Lorenzen, M., Schmid, B., Schöngart, J., Searle, E., Seben, V., Serra-Diaz, J., Sheil, D., Shvidenko, A., Silva-Espejo, J., Silveira, M., Singh, J., Sist, P., Slik, F., Sonké, B., Souza, A., Stereńczak, K., Svenning, J., Svoboda, M., Swanepoel, B., Targhetta, N., Tchebakova, N., ter Steege, H., Thomas, R., Tikhonova, E., Umunay, P., Usoltsev, V., Valencia, R., Valladares, F., van der Plas, F., Van Do, T., van Nuland, M., Vasquez, R., Verbeeck, H., Viana, H., Vibrans, A., Vieira, S., von Gadow, K., Wang, H., Watson, J., Werner, G., Wiser, S., Wittmann, F., Woell, H., Wortel, V., Zagt, R., Zawiła-Niedźwiecki, T., Zhang, C., Zhao, X., Zhou, M., Zhu, Z., Zo-Bi, I., Gann, G., and Crowther, T.
- Abstract
Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system1. Remote-sensing estimates to quantify carbon losses from global forests2–5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced6 and satellite-derived approaches2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151–363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets.
- Published
- 2023
7. Native diversity buffers against severity of non-native tree invasions
- Author
-
Delavaux, C., Crowther, T., Zohner, C., Robmann, N., Lauber, T., van den Hoogen, J., Kuebbing, S., Liang, J., de-Miguel, S., Nabuurs, G.-J., Reich, P.B., Abegg, M., Adou Yao, Y.C., Alberti, G., Almeyda Zambrano, A.M., Alvarado, B.V., Alvarez-Dávila, E., Alvarez-Loayza, P., Alves, L.F., Ammer, C., Antón-Fernández, C., Araujo-Murakami, A., Arroyo, L., Avitabile, V., Aymard, G.A., Baker, T.R., Bałazy, R., Banki, O., Barroso, J.G., Bastian, M.L., Bastin, J.-F., Birigazzi, L., Birnbaum, P., Bitariho, R., Boeckx, P., Bongers, F., Bouriaud, O., Brancalion, P.H.S., Brandl, S., Brienen, R., Broadbent, E.N., Bruelheide, H., Bussotti, F., Gatti, R.C., César, R.G., Cesljar, G., Chazdon, R., Chen, H.Y.H., Chisholm, C., Cho, H., Cienciala, E., Clark, C., Clark, D., Colletta, G.D., Coomes, D.A., Cornejo Valverde, F., Corral-Rivas, J.J., Crim, P.M., Cumming, J.R., Dayanandan, S., de Gasper, A.L., Decuyper, M., Derroire, G., DeVries, B., Djordjevic, I., Dolezal, J., Dourdain, A., Engone Obiang, N.L., Enquist, B.J., Eyre, T.J., Fandohan, A.B., Fayle, T.M., Feldpausch, T.R., Ferreira, L.V., Fischer, M., Fletcher, C., Frizzera, L., Gamarra, J.G.P., Gianelle, D., Glick, H.B., Harris, D.J., Hector, A., Hemp, A., Hengeveld, G., Hérault, B., Herbohn, J.L., Herold, M., Hillers, A., Honorio Coronado, E.N., Hui, C., Ibanez, T.T., Amaral, I., Imai, N., Jagodziński, A.M., Jaroszewicz, B., Johannsen, V.K., Joly, C.A., Jucker, T., Jung, I., Karminov, V., Kartawinata, K., Kearsley, E., Kenfack, D., Kennard, D.K., Kepfer-Rojas, S., Keppel, G., Khan, M.L., Killeen, T.J., Kim, H.S., Kitayama, K., Köhl, M., Korjus, H., Kraxner, F., Laarmann, D., Lang, M., Lewis, S.L., Lu, H., Lukina, N.V., Maitner, B.S., Malhi, Y., Marcon, E., Marimon, B.S., Marimon-Junior, B.H., Marshall, A.R., Martin, E.H., Martynenko, O., Meave, J.A., Melo-Cruz, O., Mendoza, C., Merow, C., Mendoza, A.M., Moreno, V.S., Mukul, S.A., Mundhenk, P., Nava-Miranda, M.G., Neill, D., Neldner, V., Nevenic, R., Ngugi, M., Niklaus, P., Oleksyn, J., Ontikov, P., Ortiz-Malavasi, E., Pan, Y., Paquette, A., Parada-Gutierrez, A., Parfenova, E., Park, M., Parren, M., Parthasarathy, N., Peri, P., Pfautsch, S., Phillips, O., Picard, N., Piedade, M., Piotto, D., Pitman, N., Polo, I., Poorter, L., Poulsen, A., Pretzsch, H., Ramirez Arevalo, F., Restrepo-Correa, Z., Rodeghiero, M., Rolim, S., Roopsind, A., Rovero, F., Rutishauser, E., Saikia, P., Salas-Eljatib, C., Saner, P., Schall, P., Shchepashchenko, D., Scherer-Lorenzen, M., Schmid, B., Schöngart, J., Searle, E., Seben, V., Serra-Diaz, J., Sheil, D., Shvidenko, A., Silva-Espejo, J., Silveira, M., Singh, J., Sist, P., Slik, F., Sonké, B., Souza, A., Stanislaw, M., Stereńczak, K., Svenning, J.-C., Svoboda, M., Swanepoel, B., Targhetta, N., Tchebakova, N., ter Steege, H., Thomas, R., Tikhonova, E., Umunay, P., Usoltsev, V., Valencia, R., Valladares, F., van der Plas, F., Do, T.V., van Nuland, M., Vasquez, R., Verbeeck, H., Viana, H., Vibrans, A., Vieira, S., von Gadow, K., Wang, H.-F., Watson, J., Werner, G., Wiser, S.K., Wittmann, F., Woell, H., Wortel, V., Zagt, R., Zawiła-Niedźwiecki, T., Zhang, C., Zhao, X., Zhou, M., Zhu, Z.-X., Zo-Bi, I., Maynard, D., Delavaux, C., Crowther, T., Zohner, C., Robmann, N., Lauber, T., van den Hoogen, J., Kuebbing, S., Liang, J., de-Miguel, S., Nabuurs, G.-J., Reich, P.B., Abegg, M., Adou Yao, Y.C., Alberti, G., Almeyda Zambrano, A.M., Alvarado, B.V., Alvarez-Dávila, E., Alvarez-Loayza, P., Alves, L.F., Ammer, C., Antón-Fernández, C., Araujo-Murakami, A., Arroyo, L., Avitabile, V., Aymard, G.A., Baker, T.R., Bałazy, R., Banki, O., Barroso, J.G., Bastian, M.L., Bastin, J.-F., Birigazzi, L., Birnbaum, P., Bitariho, R., Boeckx, P., Bongers, F., Bouriaud, O., Brancalion, P.H.S., Brandl, S., Brienen, R., Broadbent, E.N., Bruelheide, H., Bussotti, F., Gatti, R.C., César, R.G., Cesljar, G., Chazdon, R., Chen, H.Y.H., Chisholm, C., Cho, H., Cienciala, E., Clark, C., Clark, D., Colletta, G.D., Coomes, D.A., Cornejo Valverde, F., Corral-Rivas, J.J., Crim, P.M., Cumming, J.R., Dayanandan, S., de Gasper, A.L., Decuyper, M., Derroire, G., DeVries, B., Djordjevic, I., Dolezal, J., Dourdain, A., Engone Obiang, N.L., Enquist, B.J., Eyre, T.J., Fandohan, A.B., Fayle, T.M., Feldpausch, T.R., Ferreira, L.V., Fischer, M., Fletcher, C., Frizzera, L., Gamarra, J.G.P., Gianelle, D., Glick, H.B., Harris, D.J., Hector, A., Hemp, A., Hengeveld, G., Hérault, B., Herbohn, J.L., Herold, M., Hillers, A., Honorio Coronado, E.N., Hui, C., Ibanez, T.T., Amaral, I., Imai, N., Jagodziński, A.M., Jaroszewicz, B., Johannsen, V.K., Joly, C.A., Jucker, T., Jung, I., Karminov, V., Kartawinata, K., Kearsley, E., Kenfack, D., Kennard, D.K., Kepfer-Rojas, S., Keppel, G., Khan, M.L., Killeen, T.J., Kim, H.S., Kitayama, K., Köhl, M., Korjus, H., Kraxner, F., Laarmann, D., Lang, M., Lewis, S.L., Lu, H., Lukina, N.V., Maitner, B.S., Malhi, Y., Marcon, E., Marimon, B.S., Marimon-Junior, B.H., Marshall, A.R., Martin, E.H., Martynenko, O., Meave, J.A., Melo-Cruz, O., Mendoza, C., Merow, C., Mendoza, A.M., Moreno, V.S., Mukul, S.A., Mundhenk, P., Nava-Miranda, M.G., Neill, D., Neldner, V., Nevenic, R., Ngugi, M., Niklaus, P., Oleksyn, J., Ontikov, P., Ortiz-Malavasi, E., Pan, Y., Paquette, A., Parada-Gutierrez, A., Parfenova, E., Park, M., Parren, M., Parthasarathy, N., Peri, P., Pfautsch, S., Phillips, O., Picard, N., Piedade, M., Piotto, D., Pitman, N., Polo, I., Poorter, L., Poulsen, A., Pretzsch, H., Ramirez Arevalo, F., Restrepo-Correa, Z., Rodeghiero, M., Rolim, S., Roopsind, A., Rovero, F., Rutishauser, E., Saikia, P., Salas-Eljatib, C., Saner, P., Schall, P., Shchepashchenko, D., Scherer-Lorenzen, M., Schmid, B., Schöngart, J., Searle, E., Seben, V., Serra-Diaz, J., Sheil, D., Shvidenko, A., Silva-Espejo, J., Silveira, M., Singh, J., Sist, P., Slik, F., Sonké, B., Souza, A., Stanislaw, M., Stereńczak, K., Svenning, J.-C., Svoboda, M., Swanepoel, B., Targhetta, N., Tchebakova, N., ter Steege, H., Thomas, R., Tikhonova, E., Umunay, P., Usoltsev, V., Valencia, R., Valladares, F., van der Plas, F., Do, T.V., van Nuland, M., Vasquez, R., Verbeeck, H., Viana, H., Vibrans, A., Vieira, S., von Gadow, K., Wang, H.-F., Watson, J., Werner, G., Wiser, S.K., Wittmann, F., Woell, H., Wortel, V., Zagt, R., Zawiła-Niedźwiecki, T., Zhang, C., Zhao, X., Zhou, M., Zhu, Z.-X., Zo-Bi, I., and Maynard, D.
- Abstract
Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5-7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions.
- Published
- 2023
- Full Text
- View/download PDF
8. Evenness mediates the global relationship between forest productivity and richness
- Author
-
Hordijk, I., Maynard, D.S., Hart, S.P., Lidong, M., ter Steege, H., Liang, J., de‐Miguel, S., Nabuurs, G.‐J., Reich, P., Abegg, M., Adou Yao, C., Alberti, G., Almeyda Zambrano, A., Alvarado, B., Esteban, A.-D., Alvarez‐Loayza, P., Alves, L., Ammer, C., Antón‐Fernández, C., Araujo‐Murakami, A., Arroyo, L., Avitabile, V., Aymard C, G., Baker, T., Bałazy, R., Banki, O., Barroso, J., Bastian, M., Bastin, J.-F., Birigazzi, L., Birnbaum, P., Bitariho, R., Boeckx, P., Bongers, F., Bouriaud, O., Brancalion, P., Brandl, S., Brienen, R., Broadbent, E., Bruelheide, H., Bussotti, F., Cazzolla Gatti, R., César, R., Cesljar, G., Chazdon, R., Chen, H., Chisholm, C., Cienciala, E., Clark, C., Clark, D., Colletta, G., Coomes, D., Cornejo Valverde, F., Corral‐Rivas, J., Crim, P., Cumming, J., Dayanandan, S., de Gasper, A., Decuyper, M., Derroire, G., DeVries, B., Djordjevic, I., Iêda, A., Dourdain, A., Nestor Laurier, E., Enquist, B., Eyre, T., Fandohan, A., Fayle, T., Ferreira, L., Feldpausch, T., Finér, L., Fischer, M., Fletcher, C., Frizzera, L., Gamarra, J., Gianelle, D., Glick, H., Harris, D., Hector, A., Hemp, A., Hengeveld, G., Hérault, B., Herbohn, J., Hillers, A., Honorio Coronado, E., Hui, C., Cho, H., Ibanez, T., Bin Jung, I., Imai, N., Jagodzinski, A., Jaroszewicz, B., Johanssen, V., Joly, C., Jucker, T., Karminov, V., Kartawinata, K., Kearsley, E., Kenfack, D., Kennard, D., Kepfer‐Rojas, S., Keppel, G., Khan, M., Killeen, T., Kim, H., Kitayama, K., Köhl, M., Korjus, H., Kraxner, F., Laarmann, D., Lang, M., Lewis, S., Lu, H., Lukina, N., Maitner, B., Malhi, Y., Marcon, E., Marimon, B., Marimon‐Junior, B., Marshall, A., Martin, E., Martynenko, O., Meave, J., Melo‐Cruz, O., Mendoza, C., Merow, C., Stanislaw, M., Mendoza, A., Moreno, V., Mukul, S., Mundhenk, P., Nava‐Miranda, M., Neill, D., Neldner, V., Nevenic, R., Ngugi, M., Niklaus, P., Oleksyn, J., Ontikov, P., Ortiz‐Malavasi, E., Pan, Y., Paquette, A., Parada‐Gutierrez, A., Parfenova, E., Park, M., Parren, M., Parthasarathy, N., Peri, P., Pfautsch, S., Phillips, O., Picard, N., Piedade, M., Piotto, D., Pitman, N., Polo, I., Poorter, L., Poulsen, A., Poulsen, J., Pretzsch, H., Ramirez Arevalo, F., Restrepo‐Correa, Z., Rodeghiero, M., Rolim, S., Roopsind, A., Rovero, F., Rutishauser, E., Saikia, P., Salas‐Eljatib, C., Schall, P., Shchepashchenko, D., Scherer‐Lorenzen, M., Schmid, B., Schöngart, J., Searle, E., Šebeň, V., Serra‐Diaz, J., Sheil, D., Shvidenko, A., Silva‐Espejo, J., Silveira, M., Singh, J., Sist, P., Slik, F., Sonké, B., Souza, A., Stereńczak, K., Svenning, J.-C., Svoboda, M., Swanepoel, B., Targhetta, N., Tchebakova, N., Thomas, R., Tikhonova, E., Umunay, P., Usoltsev, V., Valencia, R., Valladares, F., van der Plas, F., Tran, D., Van Nuland, M., Vasquez Martinez, R., Verbeeck, H., Viana, H., Vibrans, A., Vieira, S., von Gadow, K., Wang, H.-F., Watson, J., Werner, G., Wiser, S., Wittmann, F., Wortel, V., Zagt, R., Zawila‐Niedzwiecki, T., Zhang, C., Zhao, X., Zhou, M., Zhu, Z.-X., Zo‐Bi, I., Crowther, T., Hordijk, I., Maynard, D.S., Hart, S.P., Lidong, M., ter Steege, H., Liang, J., de‐Miguel, S., Nabuurs, G.‐J., Reich, P., Abegg, M., Adou Yao, C., Alberti, G., Almeyda Zambrano, A., Alvarado, B., Esteban, A.-D., Alvarez‐Loayza, P., Alves, L., Ammer, C., Antón‐Fernández, C., Araujo‐Murakami, A., Arroyo, L., Avitabile, V., Aymard C, G., Baker, T., Bałazy, R., Banki, O., Barroso, J., Bastian, M., Bastin, J.-F., Birigazzi, L., Birnbaum, P., Bitariho, R., Boeckx, P., Bongers, F., Bouriaud, O., Brancalion, P., Brandl, S., Brienen, R., Broadbent, E., Bruelheide, H., Bussotti, F., Cazzolla Gatti, R., César, R., Cesljar, G., Chazdon, R., Chen, H., Chisholm, C., Cienciala, E., Clark, C., Clark, D., Colletta, G., Coomes, D., Cornejo Valverde, F., Corral‐Rivas, J., Crim, P., Cumming, J., Dayanandan, S., de Gasper, A., Decuyper, M., Derroire, G., DeVries, B., Djordjevic, I., Iêda, A., Dourdain, A., Nestor Laurier, E., Enquist, B., Eyre, T., Fandohan, A., Fayle, T., Ferreira, L., Feldpausch, T., Finér, L., Fischer, M., Fletcher, C., Frizzera, L., Gamarra, J., Gianelle, D., Glick, H., Harris, D., Hector, A., Hemp, A., Hengeveld, G., Hérault, B., Herbohn, J., Hillers, A., Honorio Coronado, E., Hui, C., Cho, H., Ibanez, T., Bin Jung, I., Imai, N., Jagodzinski, A., Jaroszewicz, B., Johanssen, V., Joly, C., Jucker, T., Karminov, V., Kartawinata, K., Kearsley, E., Kenfack, D., Kennard, D., Kepfer‐Rojas, S., Keppel, G., Khan, M., Killeen, T., Kim, H., Kitayama, K., Köhl, M., Korjus, H., Kraxner, F., Laarmann, D., Lang, M., Lewis, S., Lu, H., Lukina, N., Maitner, B., Malhi, Y., Marcon, E., Marimon, B., Marimon‐Junior, B., Marshall, A., Martin, E., Martynenko, O., Meave, J., Melo‐Cruz, O., Mendoza, C., Merow, C., Stanislaw, M., Mendoza, A., Moreno, V., Mukul, S., Mundhenk, P., Nava‐Miranda, M., Neill, D., Neldner, V., Nevenic, R., Ngugi, M., Niklaus, P., Oleksyn, J., Ontikov, P., Ortiz‐Malavasi, E., Pan, Y., Paquette, A., Parada‐Gutierrez, A., Parfenova, E., Park, M., Parren, M., Parthasarathy, N., Peri, P., Pfautsch, S., Phillips, O., Picard, N., Piedade, M., Piotto, D., Pitman, N., Polo, I., Poorter, L., Poulsen, A., Poulsen, J., Pretzsch, H., Ramirez Arevalo, F., Restrepo‐Correa, Z., Rodeghiero, M., Rolim, S., Roopsind, A., Rovero, F., Rutishauser, E., Saikia, P., Salas‐Eljatib, C., Schall, P., Shchepashchenko, D., Scherer‐Lorenzen, M., Schmid, B., Schöngart, J., Searle, E., Šebeň, V., Serra‐Diaz, J., Sheil, D., Shvidenko, A., Silva‐Espejo, J., Silveira, M., Singh, J., Sist, P., Slik, F., Sonké, B., Souza, A., Stereńczak, K., Svenning, J.-C., Svoboda, M., Swanepoel, B., Targhetta, N., Tchebakova, N., Thomas, R., Tikhonova, E., Umunay, P., Usoltsev, V., Valencia, R., Valladares, F., van der Plas, F., Tran, D., Van Nuland, M., Vasquez Martinez, R., Verbeeck, H., Viana, H., Vibrans, A., Vieira, S., von Gadow, K., Wang, H.-F., Watson, J., Werner, G., Wiser, S., Wittmann, F., Wortel, V., Zagt, R., Zawila‐Niedzwiecki, T., Zhang, C., Zhao, X., Zhou, M., Zhu, Z.-X., Zo‐Bi, I., and Crowther, T.
- Abstract
1. Biodiversity is an important component of natural ecosystems, with higher species richness often correlating with an increase in ecosystem productivity. Yet, this relationship varies substantially across environments, typically becoming less pronounced at high levels of species richness. However, species richness alone cannot reflect all important properties of a community, including community evenness, which may mediate the relationship between biodiversity and productivity. If the evenness of a community correlates negatively with richness across forests globally, then a greater number of species may not always increase overall diversity and productivity of the system. Theoretical work and local empirical studies have shown that the effect of evenness on ecosystem functioning may be especially strong at high richness levels, yet the consistency of this remains untested at a global scale. 2. Here, we used a dataset of forests from across the globe, which includes composition, biomass accumulation and net primary productivity, to explore whether productivity correlates with community evenness and richness in a way that evenness appears to buffer the effect of richness. Specifically, we evaluated whether low levels of evenness in speciose communities correlate with the attenuation of the richness–productivity relationship. 3. We found that tree species richness and evenness are negatively correlated across forests globally, with highly speciose forests typically comprising a few dominant and many rare species. Furthermore, we found that the correlation between diversity and productivity changes with evenness: at low richness, uneven communities are more productive, while at high richness, even communities are more productive. 4. Synthesis. Collectively, these results demonstrate that evenness is an integral component of the relationship between biodiversity and productivity, and that the attenuating effect of richness on forest productivity might be partly explain
- Published
- 2023
- Full Text
- View/download PDF
9. Co-limitation towards lower latitudes shapes global forest diversity gradients
- Author
-
Liang, J., Gamarra, J.G.P., Picard, N., Zhou, M., Pijanowski, B., Jacobs, D.F., Reich, P.B., Crowther, T.W., Nabuurs, G.-J., de-Miguel, S., Fang, J., Woodall, C.W., Svenning, J.-C., Jucker, T., Bastin, J.-F., Wiser, S.K., Slik, F., Hérault, B., Alberti, G., Keppel, G., Hengeveld, G.M., Ibisch, P.L., Silva, C.A., ter Steege, H., Peri, P.L., Coomes, D.A., Searle, E.B., von Gadow, K., Jaroszewicz, B., Abbasi, A.O., Abegg, M., Yao, Y.C. A., Aguirre-Gutiérrez, J., Zambrano, A.M.A., Altman, J., Alvarez-Dávila, E., Álvarez-González, J.G., Alves, L.F., Amani, B.H.K., Amani, C.A., Ammer, C., Ilondea, B.A., Antón-Fernández, C., Avitabile, V., Aymard, G.A., Azihou, A.F., Baard, J.A., Baker, T.R., Balazy, R., Bastian, M.L., Batumike, R., Bauters, M., Beeckman, H., Benu, N.M.H., Bitariho, R., Boeckx, P., Bogaert, J., Bongers, F., Bouriaud, O., Brancalion, P.H.S., Brandl, S., Brearley, F. Q., Briseno-Reyes, J., Broadbent, E.N., Bruelheide, H., Bulte, E., Catlin, A.C., Cazzolla Gatti, R., César, R.G., Chen, H.Y. H., Chisholm, C., Cienciala, E., Colletta, G.D., Corral-Rivas, J.J., Cuchietti, A., Cuni-Sanchez, A., Dar, J.A., Dayanandan, S., de Haulleville, T., Decuyper, M., Delabye, S., Derroire, G., DeVries, B., Diisi, J., Do, T.V., Dolezal, J., Dourdain, A., Durrheim, G.P., Obiang, N.L.E., Ewango, C.E.N., Eyre, T.J., Fayle, T.M., Feunang, L.F.N., Finér, L., Fischer, M., Fridman, J., Frizzera, Lorenzo., de Gasper, A.L., Gianelle, D., Glick, H.B., Gonzalez-Elizondo, M.S., Gorenstein, Lev., Habonayo, R., Hardy, O.J., Harris, D.J., Hector, A., Hemp, A., Herold, M., Hillers, A., Hubau, W., Ibanez, T., Imai, N., Imani, G., Jagodzinski, A.M., Janecek, S., Johannsen, V.K., Joly, C.A., Jumbam, B., Kabelong, B. L. P. R., Kahsay, G.A., Karminov, V., Kartawinata, K., Kassi, J.ustin N., Kearsley, E., Kennard, D.K., Kepfer-Rojas, S., Khan, M. L., Kigomo, J.N., Kim, H.S., Klauberg, C., Klomberg, Y., Korjus, H., Kothandaraman, S., Kraxner, F., Kumar, A., Kuswandi, R., Lang, M., Lawes, M.J., Leite, R.V., Lentner, G., Lewis, S.L., Libalah, M.B., Lisingo, Janvier, López-Serrano, P.M., Lu, H., Lukina, N.V., Lykke, A.M., Maicher, V., Maitner, B.S., Marcon, E., Marshall, A.R., Martin, E. H., Martynenko, O., Mbayu, F.M., Mbuvi, M. T. E., Meave, J. A., Merow, C., Miscicki, S., Moreno, V. S., Morera, A., Mukul, S.A., Müller, J.C., Murdjoko, A., Nava-Miranda, M.G., Ndive, L.E., Neldner, V.J., Nevenic, R.V., Nforbelie, L.N., Ngoh, M.L., N’Guessan, A.E., Ngugi, M.R., Ngute, A. S. K., Njila, E. N. N., Nyako, M.C., Ochuodho, T.O., Oleksyn, J., Paquette, A., Parfenova, E.I., Park, M., Parren, M., Parthasarathy, N., Pfautsch, S., Phillips, O. L., Piedade, M.T. F., Piotto, D., Pollastrini, M., Poorter, L., Poulsen, J. R., Poulsen, A.D., Pretzsch, H., Rodeghiero, M., Rolim, S.G., Rovero, F., Rutishauser, E., Sagheb-Talebi, K., Saikia, P., Sainge, M.N., Salas-Eljatib, C., Salis, A., Schall, P., Shchepashchenko, D., Scherer-Lorenzen, M., Schmid, B., Schöngart, J., Šebeň, V., Sellan, G., Selvi, F., Serra-Diaz, J.M., Sheil, D., Shvidenko, A., Sist, P., Souza, A.F., Stereńczak, K.J., Sullivan, M. J. P., Sundarapandian, S., Svoboda, M., Swaine, M.D., Targhetta, N., Tchebakova, N., Trethowan, L.A., Tropek, R., Mukendi, J.T., Umunay, P.M., Usoltsev, V.A., Vaglio Laurin, G., Valentini, R., Valladares, F., van der Plas, F., Vega-Nieva, D.J., Verbeeck, H., Viana, H., Vibrans, A.C., Vieira, S.A., Vleminckx, J., Waite, C.E., Wang, H.-F., Wasingya, E.K., Wekesa, C., Westerlund, B., Wittmann, F., Wortel, V., Zawiła-Niedźwiecki, T., Zhang, C., Zhao, X., Zhu, J., Zhu, X., Zhu, Z.-X., Zo-Bi, I.C., Hui, C., Liang, J., Gamarra, J.G.P., Picard, N., Zhou, M., Pijanowski, B., Jacobs, D.F., Reich, P.B., Crowther, T.W., Nabuurs, G.-J., de-Miguel, S., Fang, J., Woodall, C.W., Svenning, J.-C., Jucker, T., Bastin, J.-F., Wiser, S.K., Slik, F., Hérault, B., Alberti, G., Keppel, G., Hengeveld, G.M., Ibisch, P.L., Silva, C.A., ter Steege, H., Peri, P.L., Coomes, D.A., Searle, E.B., von Gadow, K., Jaroszewicz, B., Abbasi, A.O., Abegg, M., Yao, Y.C. A., Aguirre-Gutiérrez, J., Zambrano, A.M.A., Altman, J., Alvarez-Dávila, E., Álvarez-González, J.G., Alves, L.F., Amani, B.H.K., Amani, C.A., Ammer, C., Ilondea, B.A., Antón-Fernández, C., Avitabile, V., Aymard, G.A., Azihou, A.F., Baard, J.A., Baker, T.R., Balazy, R., Bastian, M.L., Batumike, R., Bauters, M., Beeckman, H., Benu, N.M.H., Bitariho, R., Boeckx, P., Bogaert, J., Bongers, F., Bouriaud, O., Brancalion, P.H.S., Brandl, S., Brearley, F. Q., Briseno-Reyes, J., Broadbent, E.N., Bruelheide, H., Bulte, E., Catlin, A.C., Cazzolla Gatti, R., César, R.G., Chen, H.Y. H., Chisholm, C., Cienciala, E., Colletta, G.D., Corral-Rivas, J.J., Cuchietti, A., Cuni-Sanchez, A., Dar, J.A., Dayanandan, S., de Haulleville, T., Decuyper, M., Delabye, S., Derroire, G., DeVries, B., Diisi, J., Do, T.V., Dolezal, J., Dourdain, A., Durrheim, G.P., Obiang, N.L.E., Ewango, C.E.N., Eyre, T.J., Fayle, T.M., Feunang, L.F.N., Finér, L., Fischer, M., Fridman, J., Frizzera, Lorenzo., de Gasper, A.L., Gianelle, D., Glick, H.B., Gonzalez-Elizondo, M.S., Gorenstein, Lev., Habonayo, R., Hardy, O.J., Harris, D.J., Hector, A., Hemp, A., Herold, M., Hillers, A., Hubau, W., Ibanez, T., Imai, N., Imani, G., Jagodzinski, A.M., Janecek, S., Johannsen, V.K., Joly, C.A., Jumbam, B., Kabelong, B. L. P. R., Kahsay, G.A., Karminov, V., Kartawinata, K., Kassi, J.ustin N., Kearsley, E., Kennard, D.K., Kepfer-Rojas, S., Khan, M. L., Kigomo, J.N., Kim, H.S., Klauberg, C., Klomberg, Y., Korjus, H., Kothandaraman, S., Kraxner, F., Kumar, A., Kuswandi, R., Lang, M., Lawes, M.J., Leite, R.V., Lentner, G., Lewis, S.L., Libalah, M.B., Lisingo, Janvier, López-Serrano, P.M., Lu, H., Lukina, N.V., Lykke, A.M., Maicher, V., Maitner, B.S., Marcon, E., Marshall, A.R., Martin, E. H., Martynenko, O., Mbayu, F.M., Mbuvi, M. T. E., Meave, J. A., Merow, C., Miscicki, S., Moreno, V. S., Morera, A., Mukul, S.A., Müller, J.C., Murdjoko, A., Nava-Miranda, M.G., Ndive, L.E., Neldner, V.J., Nevenic, R.V., Nforbelie, L.N., Ngoh, M.L., N’Guessan, A.E., Ngugi, M.R., Ngute, A. S. K., Njila, E. N. N., Nyako, M.C., Ochuodho, T.O., Oleksyn, J., Paquette, A., Parfenova, E.I., Park, M., Parren, M., Parthasarathy, N., Pfautsch, S., Phillips, O. L., Piedade, M.T. F., Piotto, D., Pollastrini, M., Poorter, L., Poulsen, J. R., Poulsen, A.D., Pretzsch, H., Rodeghiero, M., Rolim, S.G., Rovero, F., Rutishauser, E., Sagheb-Talebi, K., Saikia, P., Sainge, M.N., Salas-Eljatib, C., Salis, A., Schall, P., Shchepashchenko, D., Scherer-Lorenzen, M., Schmid, B., Schöngart, J., Šebeň, V., Sellan, G., Selvi, F., Serra-Diaz, J.M., Sheil, D., Shvidenko, A., Sist, P., Souza, A.F., Stereńczak, K.J., Sullivan, M. J. P., Sundarapandian, S., Svoboda, M., Swaine, M.D., Targhetta, N., Tchebakova, N., Trethowan, L.A., Tropek, R., Mukendi, J.T., Umunay, P.M., Usoltsev, V.A., Vaglio Laurin, G., Valentini, R., Valladares, F., van der Plas, F., Vega-Nieva, D.J., Verbeeck, H., Viana, H., Vibrans, A.C., Vieira, S.A., Vleminckx, J., Waite, C.E., Wang, H.-F., Wasingya, E.K., Wekesa, C., Westerlund, B., Wittmann, F., Wortel, V., Zawiła-Niedźwiecki, T., Zhang, C., Zhao, X., Zhu, J., Zhu, X., Zhu, Z.-X., Zo-Bi, I.C., and Hui, C.
- Published
- 2022
- Full Text
- View/download PDF
10. MONOCULAR DEPTH ESTIMATION IN FOREST ENVIRONMENTS
- Author
-
Hristova, H., primary, Abegg, M., additional, Fischer, C., additional, and Rehush, N., additional
- Published
- 2022
- Full Text
- View/download PDF
11. Anomalous global effects induced by ‘blind’ distractors in visual hemifield defects
- Author
-
Van der Stigchel, S., Nijboer, T.C.W., Bergsma, D.P., Abegg, M., and Barton, J.J.S.
- Published
- 2010
- Full Text
- View/download PDF
12. Evolution of MRI Findings in Patients with Idiopathic Intracranial Hypertension after Venous Sinus Stenting
- Author
-
Belachew, N.F., primary, Almiri, W., additional, Encinas, R., additional, Hakim, A., additional, Baschung, S., additional, Kaesmacher, J., additional, Dobrocky, T., additional, Schankin, C.J., additional, Abegg, M., additional, Piechowiak, E.I., additional, Raabe, A., additional, Gralla, J., additional, and Mordasini, P., additional
- Published
- 2021
- Full Text
- View/download PDF
13. Prediction of cortical theta oscillations in humans for phase-locked visual stimulation
- Author
-
Bruegger, D., primary and Abegg, M., additional
- Published
- 2021
- Full Text
- View/download PDF
14. Long-Term Immunosuppression After Solitary Islet Transplantation Is Associated With Preserved C-Peptide Secretion for More Than a Decade
- Author
-
Blau, J. E., Abegg, M. R., Flegel, W. A., Zhao, X., Harlan, D. M., and Rother, K. I.
- Published
- 2015
- Full Text
- View/download PDF
15. PRESENCE-ONLY AND PRESENCE-ABSENCE DATA FOR COMPARING SPECIES DISTRIBUTION MODELING METHODS
- Author
-
Elith, J, Graham, C, Valavi, R, Abegg, M, Bruce, C, Ford, A, Guisan, A, Hijmans, RJ, Huettmann, F, Lohmann, L, Loiselle, B, Moritz, C, Overton, J, Peterson, AT, Phillips, S, Richardson, K, Williams, S, Wiser, SK, Wohlgemuth, T, Zimmermann, NE, Ferrier, S, Elith, J, Graham, C, Valavi, R, Abegg, M, Bruce, C, Ford, A, Guisan, A, Hijmans, RJ, Huettmann, F, Lohmann, L, Loiselle, B, Moritz, C, Overton, J, Peterson, AT, Phillips, S, Richardson, K, Williams, S, Wiser, SK, Wohlgemuth, T, Zimmermann, NE, and Ferrier, S
- Abstract
Species distribution models (SDMs) are widely used to predict and study distributions of species. Many different modeling methods and associated algorithms are used and continue to emerge. It is important to understand how different approaches perform, particularly when applied to species occurrence records that were not gathered in structured surveys (e.g. opportunistic records). This need motivated a large-scale, collaborative effort, published in 2006, that aimed to create objective comparisons of algorithm performance. As a benchmark, and to facilitate future comparisons of approaches, here we publish that dataset: point location records for 226 anonymized species from six regions of the world, with accompanying predictor variables in raster (grid) and point formats. A particularly interesting characteristic of this dataset is that independent presence-absence survey data are available for evaluation alongside the presence-only species occurrence data intended for modeling. The dataset is available on Open Science Framework and as an R package and can be used as a benchmark for modeling approaches and for testing new ways to evaluate the accuracy of SDMs.
- Published
- 2020
16. Climate reverses directionality in the richness-abundance relationship across the World's main forest biomes
- Author
-
Madrigal-Gonzalez, J, Calatayud, J, Ballesteros-Canovas, JA, Escudero, A, Cayuela, L, Rueda, M, Ruiz-Benito, P, Herrero, A, Aponte, C, Sagardia, R, Plumptre, AJ, Dupire, S, Espinosa, C, Tutubalina, O, Myint, M, Pataro, L, Lopez-Saez, J, Macia, MJ, Abegg, M, Zavala, MA, Quesada-Roman, A, Vega-Araya, M, Golubeva, E, Timokhina, Y, Stoffel, M, Madrigal-Gonzalez, J, Calatayud, J, Ballesteros-Canovas, JA, Escudero, A, Cayuela, L, Rueda, M, Ruiz-Benito, P, Herrero, A, Aponte, C, Sagardia, R, Plumptre, AJ, Dupire, S, Espinosa, C, Tutubalina, O, Myint, M, Pataro, L, Lopez-Saez, J, Macia, MJ, Abegg, M, Zavala, MA, Quesada-Roman, A, Vega-Araya, M, Golubeva, E, Timokhina, Y, and Stoffel, M
- Abstract
More tree species can increase the carbon storage capacity of forests (here referred to as the more species hypothesis) through increased tree productivity and tree abundance resulting from complementarity, but they can also be the consequence of increased tree abundance through increased available energy (more individuals hypothesis). To test these two contrasting hypotheses, we analyse the most plausible pathways in the richness-abundance relationship and its stability along global climatic gradients. We show that positive effect of species richness on tree abundance only prevails in eight of the twenty-three forest regions considered in this study. In the other forest regions, any benefit from having more species is just as likely (9 regions) or even less likely (6 regions) than the effects of having more individuals. We demonstrate that diversity effects prevail in the most productive environments, and abundance effects become dominant towards the most limiting conditions. These findings can contribute to refining cost-effective mitigation strategies based on fostering carbon storage through increased tree diversity. Specifically, in less productive environments, mitigation measures should promote abundance of locally adapted and stress tolerant tree species instead of increasing species richness.
- Published
- 2020
17. Assessment of a new Goldmann applanation tonometer
- Author
-
Egli, M, Goldblum, D, Kipfer, A, Rohrer, K, Tappeiner, C, Abegg, M, Berger, L, Schoetzau, A, and Iliev, M E
- Published
- 2012
- Full Text
- View/download PDF
18. Abuse of vasoconstrictive eyedrops mimicking an ocular pemphigoid
- Author
-
TAPPEINER, C., SARRA, G.-M., and ABEGG, M.
- Published
- 2009
19. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses
- Author
-
Steidinger, BS, Crowther, TW, Liang, J, Van Nuland, ME, Werner, GDA, Reich, PB, Nabuurs, G, de-Miguel, S, Zhou, M, Picard, N, Herault, B, Zhao, X, Zhang, C, Routh, D, Peay, KG, Abegg, M, Adou Yao, C, Alberti, G, Almeyda Zambrano, A, Alvarez-Davila, E, Alvarez-Loayza, P, Alves, LF, Ammer, C, Antón-Fernández, C, Araujo-Murakami, A, Arroyo, L, Avitabile, V, Aymard, G, Baker, T, Bałazy, R, Banki, O, Barroso, J, Bastian, M, Bastin, JF, Birigazzi, L, Birnbaum, P, Bitariho, R, Boeckx, P, Bongers, F, Bouriaud, O, Brancalion, PHS, Brandl, S, Brearley, FQ, Brienen, R, Broadbent, E, Bruelheide, H, Bussotti, F, Cazzolla Gatti, R, Cesar, R, Cesljar, G, Chazdon, R, Chen, HYH, Chisholm, C, Cienciala, E, Clark, CJ, Clark, D, Colletta, G, Condit, R, Coomes, D, Cornejo Valverde, F, Corral-Rivas, JJ, Crim, P, Cumming, J, Dayanandan, S, de Gasper, AL, Decuyper, M, Derroire, G, DeVries, B, Djordjevic, I, Iêda, A, Dourdain, A, Obiang, NLE, Enquist, B, Eyre, T, Fandohan, AB, Fayle, TM, Feldpausch, TR, Finér, L, Fischer, M, Fletcher, C, Fridman, J, Frizzera, L, Gamarra, JGP, Gianelle, D, Glick, HB, Harris, D, Hector, A, Hemp, A, Hengeveld, G, Herbohn, J, Herold, M, Hillers, A, Honorio Coronado, EN, Huber, M, Hui, C, Cho, H, Ibanez, T, Jung, I, Imai, N, and Jagodzinski, AM
- Abstract
The identity of the dominant root-associated microbial symbionts in a forest determines the ability of trees to access limiting nutrients from atmospheric or soil pools 1,2 , sequester carbon 3,4 and withstand the effects of climate change 5,6 . Characterizing the global distribution of these symbioses and identifying the factors that control this distribution are thus integral to understanding the present and future functioning of forest ecosystems. Here we generate a spatially explicit global map of the symbiotic status of forests, using a database of over 1.1 million forest inventory plots that collectively contain over 28,000 tree species. Our analyses indicate that climate variables—in particular, climatically controlled variation in the rate of decomposition—are the primary drivers of the global distribution of major symbioses. We estimate that ectomycorrhizal trees, which represent only 2% of all plant species 7 , constitute approximately 60% of tree stems on Earth. Ectomycorrhizal symbiosis dominates forests in which seasonally cold and dry climates inhibit decomposition, and is the predominant form of symbiosis at high latitudes and elevation. By contrast, arbuscular mycorrhizal trees dominate in aseasonal, warm tropical forests, and occur with ectomycorrhizal trees in temperate biomes in which seasonally warm-and-wet climates enhance decomposition. Continental transitions between forests dominated by ectomycorrhizal or arbuscular mycorrhizal trees occur relatively abruptly along climate-driven decomposition gradients; these transitions are probably caused by positive feedback effects between plants and microorganisms. Symbiotic nitrogen fixers—which are insensitive to climatic controls on decomposition (compared with mycorrhizal fungi)—are most abundant in arid biomes with alkaline soils and high maximum temperatures. The climatically driven global symbiosis gradient that we document provides a spatially explicit quantitative understanding of microbial symbioses at the global scale, and demonstrates the critical role of microbial mutualisms in shaping the distribution of plant species.
- Published
- 2019
20. Author Correction: Climatic controls of decomposition drive the global biogeography of forest-tree symbioses
- Author
-
Steidinger, B., Crowther, T., Liang, J., Van Nuland, M., Werner, G., Reich, P., Nabuurs, G., de-Miguel, S., Zhou, M., Picard, N., Herault, B., Zhao, X., Zhang, C., Routh, D., Peay, K., Abegg, M., Adou~Yao, C., Alberti, G., Almeyda~Zambrano, A., Alvarez-Davila, E., Alvarez-Loayza, P., Alves, L., Ammer, C., Antón-Fernández, C., Araujo-Murakami, A., Arroyo, L., Avitabile, V., Aymard, G., Baker, T., Ba?azy, R., Banki, O., Barroso, J., Bastian, M., Bastin, J., Birigazzi, L., Birnbaum, P., Bitariho, R., Boeckx, P., Bongers, F., Bouriaud, O., Brancalion, P., Brandl, S., Brearley, F., Brienen, R., Broadbent, E., Bruelheide, H., Bussotti, F., Cazzolla~Gatti, R., Cesar, R., Cesljar, G., Chazdon, R., Chen, H., Chisholm, C., Cienciala, E., Clark, C., Clark, D., Colletta, G., Condit, R., Coomes, D., Cornejo~Valverde, F., Corral-Rivas, J., Crim, P., Cumming, J., Dayanandan, S., de Gasper, A., Decuyper, M., Derroire, G., DeVries, B., Djordjevic, I., Iêda, A., Dourdain, A., Obiang, N., Enquist, B., Eyre, T., Fandohan, A., Fayle, T., Feldpausch, T., Finér, L., Fischer, M., Fletcher, C., Fridman, J., Frizzera, L., Gamarra, J., Gianelle, D., Glick, H., Harris, D., Hector, A., Hemp, A., Hengeveld, G., Herbohn, J., Herold, M., Hillers, A., Honorio Coronado, E., Huber, M., Hui, C., Cho, H., Ibanez, T., Jung, I., Imai, N., Jagodzinski, A., Jaroszewicz, B., Johannsen, V., Joly, C., Jucker, T., Karminov, V., Kartawinata, K., Kearsley, E., Kenfack, D., Kennard, D., Kepfer-Rojas, S., Keppel, G., Khan, M., Killeen, T., Kim, H., Kitayama, K., K{ö}hl, M., Korjus, H., Kraxner, F., Laarmann, D., Lang, M., Lewis, S., Lu, H., Lukina, N., Maitner, B., Malhi, Y., Marcon, E., Marimon, B., Marimon-Junior, B., Marshall, A., Martin, E., Martynenko, O., Meave, J., Melo-Cruz, O., Mendoza, C., Merow, C., Monteagudo~Mendoza, A., Moreno, V., Mukul, S., Mundhenk, P., Nava-Miranda, M., Neill, D., Neldner, V., Nevenic, R., Ngugi, M., Niklaus, P., Oleksyn, J., Ontikov, P., Ortiz-Malavasi, E., Pan, Y., Paquette, A., Parada-Gutierrez, A., Parfenova, E., Park, M., Parren, M., Parthasarathy, N., Peri, P., Pfautsch, S., Phillips, O., Piedade, M., Piotto, D., Pitman, N., Polo, I., Poorter, L., Poulsen, A., Poulsen, J., Pretzsch, H., Ramirez~Arevalo, F., Restrepo-Correa, Z., Rodeghiero, M., Rolim, S., Roopsind, A., Rovero, F., Rutishauser, E., Saikia, P., Saner, P., Schall, P., Schelhaas, M., Schepaschenko, D., Scherer-Lorenzen, M., Schmid, B., Sch{ö}ngart, J., Searle, E., Seben, V., Serra-Diaz, J., Salas-Eljatib, C., Sheil, D., Shvidenko, A., Silva-Espejo, J., Silveira, M., Singh, J., Sist, P., Slik, F., Sonké, B., Souza, A., Stere?czak, K., Svenning, J., Svoboda, M., Targhetta, N., Tchebakova, N., Steege, H., Thomas, R., Tikhonova, E., Umunay, P., Usoltsev, V., Valladares, F., van der Plas, F., Van Do, T., Vasquez~Martinez, R., Verbeeck, H., Viana, H., Vieira, S., von Gadow, K., Wang, H., Watson, J., Westerlund, B., Wiser, S., Wittmann, F., Wortel, V., Zagt, R., Zawila-Niedzwiecki, T., Zhu, Z., Zo-Bi, I., and Systems Ecology
- Subjects
0301 basic medicine ,Biogeography ,Bos- en Landschapsecologie ,02 engineering and technology ,Forest and Nature Conservation Policy ,03 medical and health sciences ,Laboratorium voor Plantenveredeling ,Laboratory of Geo-information Science and Remote Sensing ,Decomposition (computer science) ,Bos- en Natuurbeleid ,Life Science ,Forest and Landscape Ecology ,Bosecologie en Bosbeheer ,Laboratorium voor Geo-informatiekunde en Remote Sensing ,Vegetatie ,Vegetation ,Multidisciplinary ,Ecology ,Published Erratum ,021001 nanoscience & nanotechnology ,PE&RC ,Forest Ecology and Forest Management ,Tree (data structure) ,Plant Breeding ,030104 developmental biology ,Geography ,Biometris ,Vegetatie, Bos- en Landschapsecologie ,Vegetation, Forest and Landscape Ecology ,0210 nano-technology ,Citation - Abstract
In this Letter, the middle initial of author G. J. Nabuurs was omitted, and he should have been associated with an additional affiliation: ‘Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, The Netherlands’ (now added as affiliation 182). In addition, the following two statements have been added to the Supplementary Acknowledgements. (1): ‘We would particularly like to thank The French NFI for the work of the many field teams and engineers, who have made extraordinary efforts to make forest inventory data publicly available.’ (1): ‘Sergio de Miguel benefited from a Serra- Húnter Fellowship provided by the Generalitat of Catalonia.’ Finally, the second sentence of the Methods section should have cited the French NFI, which provided a national forestry database used in our analysis, to read as follows: ‘The GFBi database consists of individual-based data that we compiled from all the regional and national GFBi forest-inventory datasets, including the French NFI (IGN—French National Forest Inventory, raw data, annual campaigns 2005 and following, https://inventaire-forestier.ign.fr/spip.php?rubrique159, site accessed on 01 January 2015)’. All of these errors have been corrected online.
- Published
- 2019
21. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses
- Author
-
Steidinger, B. S., Crowther, T. W., Liang, J., Van Nuland, M. E., Werner, G. D. A., Reich, P. B., Nabuurs, G., de-Miguel, S., Zhou, M., Picard, N., Herault, B., Karminov, V., Sist, P., Targhetta, N., Tchebakova, N., Steege, H., Johannsen, V., Iêda, A., Alvarez-Loayza, P., Thomas, R., Bastin, J. -F., Ibanez, T., Tikhonova, E., Umunay, P., Dayanandan, S., Imai, N., Derroire, G., Usoltsev, V. A., Valladares, F., van der Plas, F., Dourdain, A., Van Do, T., Abegg, M., Enquist, B., Vasquez Martinez, R., Verbeeck, H., Joly, C. A., Viana, H., Alves, L. F., Jagodzinski, A. M., Vieira, S., Ngugi, M., de Gasper, A. L., Keppel, G., Obiang, N. L. E., Neldner, V., von Gadow, K., Wang, H. -F., Watson, J., Westerlund, B., Wiser, S., Wittmann, F., Wortel, V., Khan, M. L., Kraxner, F., Jucker, T., Zagt, R., Birigazzi, L., Ortiz-Malavasi, E., Baker, T., Birnbaum, P., Bitariho, R., Kartawinata, K., Niklaus, P., Kennard, D., Laarmann, D., Boeckx, P., Bongers, F., Bouriaud, O., Kim, H. S., Silveira, M., Köhl, M., Brancalion, P. H. S., Brandl, S., Brearley, F. Q., Brienen, R., Lang, M., Broadbent, E., Bruelheide, H., Oleksyn, J., Bussotti, F., Searle, E., Nevenic, R., Kearsley, E., Schmid, B., Kitayama, K., Cazzolla Gatti, R., Zhang, C., Cesar, R., Cesljar, G., Chazdon, R., Chen, H. Y. H., Chisholm, C., Cienciala, E., Park, M., Ontikov, P., Clark, C. J., Eyre, T., Sonké, B., Clark, D., Sheil, D., DeVries, B., Fandohan, A. B., Fayle, T. M., Feldpausch, T. R., Seben, V., Parren, M., Kepfer-Rojas, S., Finér, L., Lewis, S., Fischer, M., Fletcher, C., Pan, Y., Almeyda Zambrano, A., Parada-Gutierrez, A., Fridman, J., Frizzera, L., Gamarra, J. G. P., Parthasarathy, N., Gianelle, D., Pfautsch, S., Glick, H. B., Harris, D., Serra-Diaz, J. M., Hector, A., Zhao, X., Schöngart, J., Hemp, A., Zhu, Z. -X., Paquette, A., Peri, P. L., Zawila-Niedzwiecki, T., Hengeveld, G., Herbohn, J., Herold, M., Hillers, A., Honorio, Coronado, E. N., Huber, M., Hui, C., Slik, F., Salas-Eljatib, C., Cho, H., Lu, H., Araujo-Murakami, A., Korjus, H., Lukina, N., Maitner, B., Shvidenko, A., Zo-Bi, I. C., Singh, J., Malhi, Y., Marcon, E., Marimon, B. S., Souza, A. F., Decuyper, M., Svenning, J. -C., Marimon-Junior, B. H., Marshall, A. R., Martin, E., Routh, D., Martynenko, O., Meave, J. A., Melo-Cruz, O., Coomes, D., Silva-Espejo, J., Ammer, C., Colletta, G., Stereńczak, K., Mendoza, C., Merow, C., Monteagudo Mendoza, A., Moreno, V., Mukul, S. A., Mundhenk, P., Nava-Miranda, M. G., Antón-Fernández, C., Bałazy, R., Peay, K. G., Phillips, O., Neill, D., Cumming, J., Parfenova, E., Piedade, M. T., Piotto, D., Adou Yao, C. Y., Cornejo Valverde, F., Alvarez-Davila, E., Banki, O., Pitman, N. C. A., Polo, I., Poorter, L., Arroyo, L., Kenfack, D., Aymard, G., Poulsen, A. D., Poulsen, J. R., Pretzsch, H., Ramirez Arevalo, F., Barroso, J., Restrepo-Correa, Z., Rodeghiero, M., Corral-Rivas, J. J., Rolim, S., Jaroszewicz, B., Condit, R., Alberti, G., Jung, I., Avitabile, V., Roopsind, A., Bastian, M., Rovero, F., Rutishauser, E., Saikia, P., Saner, P., Schall, P., Schelhaas, M. -J., Djordjevic, I., Crim, P., Schepaschenko, D., Svoboda, M., Killeen, T., Scherer-Lorenzen, M., Steidinger, B. S., Crowther, T. W., Liang, J., Van Nuland, M. E., Werner, G. D. A., Reich, P. B., Nabuurs, G., de-Miguel, S., Zhou, M., Picard, N., Herault, B., Karminov, V., Sist, P., Targhetta, N., Tchebakova, N., Steege, H., Johannsen, V., Iêda, A., Alvarez-Loayza, P., Thomas, R., Bastin, J. -F., Ibanez, T., Tikhonova, E., Umunay, P., Dayanandan, S., Imai, N., Derroire, G., Usoltsev, V. A., Valladares, F., van der Plas, F., Dourdain, A., Van Do, T., Abegg, M., Enquist, B., Vasquez Martinez, R., Verbeeck, H., Joly, C. A., Viana, H., Alves, L. F., Jagodzinski, A. M., Vieira, S., Ngugi, M., de Gasper, A. L., Keppel, G., Obiang, N. L. E., Neldner, V., von Gadow, K., Wang, H. -F., Watson, J., Westerlund, B., Wiser, S., Wittmann, F., Wortel, V., Khan, M. L., Kraxner, F., Jucker, T., Zagt, R., Birigazzi, L., Ortiz-Malavasi, E., Baker, T., Birnbaum, P., Bitariho, R., Kartawinata, K., Niklaus, P., Kennard, D., Laarmann, D., Boeckx, P., Bongers, F., Bouriaud, O., Kim, H. S., Silveira, M., Köhl, M., Brancalion, P. H. S., Brandl, S., Brearley, F. Q., Brienen, R., Lang, M., Broadbent, E., Bruelheide, H., Oleksyn, J., Bussotti, F., Searle, E., Nevenic, R., Kearsley, E., Schmid, B., Kitayama, K., Cazzolla Gatti, R., Zhang, C., Cesar, R., Cesljar, G., Chazdon, R., Chen, H. Y. H., Chisholm, C., Cienciala, E., Park, M., Ontikov, P., Clark, C. J., Eyre, T., Sonké, B., Clark, D., Sheil, D., DeVries, B., Fandohan, A. B., Fayle, T. M., Feldpausch, T. R., Seben, V., Parren, M., Kepfer-Rojas, S., Finér, L., Lewis, S., Fischer, M., Fletcher, C., Pan, Y., Almeyda Zambrano, A., Parada-Gutierrez, A., Fridman, J., Frizzera, L., Gamarra, J. G. P., Parthasarathy, N., Gianelle, D., Pfautsch, S., Glick, H. B., Harris, D., Serra-Diaz, J. M., Hector, A., Zhao, X., Schöngart, J., Hemp, A., Zhu, Z. -X., Paquette, A., Peri, P. L., Zawila-Niedzwiecki, T., Hengeveld, G., Herbohn, J., Herold, M., Hillers, A., Honorio, Coronado, E. N., Huber, M., Hui, C., Slik, F., Salas-Eljatib, C., Cho, H., Lu, H., Araujo-Murakami, A., Korjus, H., Lukina, N., Maitner, B., Shvidenko, A., Zo-Bi, I. C., Singh, J., Malhi, Y., Marcon, E., Marimon, B. S., Souza, A. F., Decuyper, M., Svenning, J. -C., Marimon-Junior, B. H., Marshall, A. R., Martin, E., Routh, D., Martynenko, O., Meave, J. A., Melo-Cruz, O., Coomes, D., Silva-Espejo, J., Ammer, C., Colletta, G., Stereńczak, K., Mendoza, C., Merow, C., Monteagudo Mendoza, A., Moreno, V., Mukul, S. A., Mundhenk, P., Nava-Miranda, M. G., Antón-Fernández, C., Bałazy, R., Peay, K. G., Phillips, O., Neill, D., Cumming, J., Parfenova, E., Piedade, M. T., Piotto, D., Adou Yao, C. Y., Cornejo Valverde, F., Alvarez-Davila, E., Banki, O., Pitman, N. C. A., Polo, I., Poorter, L., Arroyo, L., Kenfack, D., Aymard, G., Poulsen, A. D., Poulsen, J. R., Pretzsch, H., Ramirez Arevalo, F., Barroso, J., Restrepo-Correa, Z., Rodeghiero, M., Corral-Rivas, J. J., Rolim, S., Jaroszewicz, B., Condit, R., Alberti, G., Jung, I., Avitabile, V., Roopsind, A., Bastian, M., Rovero, F., Rutishauser, E., Saikia, P., Saner, P., Schall, P., Schelhaas, M. -J., Djordjevic, I., Crim, P., Schepaschenko, D., Svoboda, M., Killeen, T., and Scherer-Lorenzen, M.
- Abstract
The identity of the dominant root-associated microbial symbionts in a forest determines the ability of trees to access limiting nutrients from atmospheric or soil pools 1,2 , sequester carbon 3,4 and withstand the effects of climate change 5,6 . Characterizing the global distribution of these symbioses and identifying the factors that control this distribution are thus integral to understanding the present and future functioning of forest ecosystems. Here we generate a spatially explicit global map of the symbiotic status of forests, using a database of over 1.1 million forest inventory plots that collectively contain over 28,000 tree species. Our analyses indicate that climate variables—in particular, climatically controlled variation in the rate of decomposition—are the primary drivers of the global distribution of major symbioses. We estimate that ectomycorrhizal trees, which represent only 2% of all plant species 7 , constitute approximately 60% of tree stems on Earth. Ectomycorrhizal symbiosis dominates forests in which seasonally cold and dry climates inhibit decomposition, and is the predominant form of symbiosis at high latitudes and elevation. By contrast, arbuscular mycorrhizal trees dominate in aseasonal, warm tropical forests, and occur with ectomycorrhizal trees in temperate biomes in which seasonally warm-and-wet climates enhance decomposition. Continental transitions between forests dominated by ectomycorrhizal or arbuscular mycorrhizal trees occur relatively abruptly along climate-driven decomposition gradients; these transitions are probably caused by positive feedback effects between plants and microorganisms. Symbiotic nitrogen fixers—which are insensitive to climatic controls on decomposition (compared with mycorrhizal fungi)—are most abundant in arid biomes with alkaline soils and high maximum temperatures. The climatically driven global symbiosis gradient that we document provides a spatially explicit quantitative understanding of microbial sym, 33Smithsonian’s National Zoo and Conservation Biology Institute, Washington, DC, USA. 34Institute of Tropical Forest Conservation, Mbarara University of Sciences and Technology, Mbarara, Uganda. 35Isotope Bioscience Laboratory - ISOFYS, Ghent University, Ghent, Belgium. 36Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control (MANSiD), Stefan cel Mare University of Suceava, Suceava, Romania. 37Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil. 38Bavarian State Institute of Forestry, Freising, Germany. 39Manchester Metropolitan University, Manchester, UK. 40Institute of Biology, Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle-Wittenberg, Germany. 41German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany. 42Department of Agriculture, Food, Environment and Forest (DAGRI), University of Firenze, Florence, Italy. 43Biological Institute, Tomsk State University, Tomsk, Russia. 44Department of Spatial Regulation, GIS and Forest Policy, Institute of Forestry, Belgrade, Serbia. 45Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA. 46Tropical Forests and People Research Centre, University of the Sunshine Coast, Maroochydore, Queensland, Australia. 47Faculty of Natural Resources Management, Lakehead University, Thunder Bay, Ontario, Canada. 48Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, China. 49Institute of Integrative Biology, ETH Zürich, Zurich, Switzerland. 50IFER - Institute of Forest Ecosystem Research, Jilove u Prahy, Czech Republic. 51Global Change Research Institute CAS, Brno, Czech Republic. 52Nicholas School of the Environment, Duke University, Durham, NC, USA. 53Department of Biology, University of Missouri-St Loui
- Published
- 2019
22. Close-range laser scanning in forests: towards physically based semantics across scales
- Author
-
Morsdorf, F., primary, Kükenbrink, D., additional, Schneider, F. D., additional, Abegg, M., additional, and Schaepman, M. E., additional
- Published
- 2018
- Full Text
- View/download PDF
23. Unilateral papilledema after trabeculectomy in a patient with intracranial hypertension
- Author
-
Abegg, M, Fleischhauer, J, Landau, K, University of Zurich, and Landau, K
- Subjects
10018 Ophthalmology Clinic ,610 Medicine & health ,2731 Ophthalmology - Published
- 2008
24. Motility of Bacterial Pathogens in Minimal Media Containing Human Serum
- Author
-
Mendonça, N., primary, Faccio, A., additional, and Abegg, M., additional
- Published
- 2014
- Full Text
- View/download PDF
25. Treatment of branch retinal vein occlusion induced macular edema with bevacizumab
- Author
-
Abegg, M, Tappeiner, C, Wolf-Schnurrbusch, U, Barthelmes, D, Wolf, S, Fleischhauer, J, Abegg, M, Tappeiner, C, Wolf-Schnurrbusch, U, Barthelmes, D, Wolf, S, and Fleischhauer, J
- Abstract
BACKGROUND: Branch retinal vein occlusion is a frequent cause of visual loss with currently insufficient treatment options. We evaluate the effect of Bevacizumab (Avastin) treatment in patients with macular edema induced by branch retinal vein occlusion. METHODS: Retrospective analysis of 32 eyes in 32 patients with fluorescein angiography proven branch retinal vein occlusion, macular edema and Bevacizumab treatment. Outcome measures were best corrected visual acuity in logMAR and central retinal thickness in OCT. RESULTS: Visual acuity was significantly better 4 to 6 weeks after Bevacizumab treatment compared to visual acuity prior to treatment (before 0.7 +/- 0.3 and after 0.5 +/- 0.3; mean +/- standard deviation; p < 0.01, paired t-test). Gain in visual acuity was accompanied by a significant decrease in retinal thickness (454 +/- 117 to 305 +/- 129 microm, p < 0.01, paired t-test). Follow up (170, 27 - 418 days; median, range) shows that improvement for both visual acuity and retinal thickness last for several months after Bevacizumab use. CONCLUSION: We present evidence that intravitreal Bevacizumab is an effective and lasting treatment for macular edema after branch retinal vein occlusion.
- Published
- 2008
26. Impact of optic media opacities and image compression on quantitative analysis of optical coherence tomography
- Author
-
Tappeiner, C, Barthelmes, D, Abegg, M H, Wolf, S, Fleischhauer, J C, Tappeiner, C, Barthelmes, D, Abegg, M H, Wolf, S, and Fleischhauer, J C
- Abstract
PURPOSE: To analyze the impact of opacities in the optical pathway and image compression of 32-bit raw data to 8-bit jpg images on quantified optical coherence tomography (OCT) image analysis. METHODS: In 18 eyes of nine healthy subjects, OCT images were acquired from the central macula. To simulate opacities in the optical system, neutral-density (ND) filters with linear absorption spectra were placed between the OCT device and examined eyes. Light reflection profiles (LRPs) of images acquired with various ND filters were compared. LRPs of the 32-bit raw data were compared with those obtained from the 8-bit jpg compressed images. RESULTS: ND filters induced a linear decrease of reflectivity in OCT images, depending on initial signal intensity. Quantitative OCT analysis showed no significant difference between 32-bit raw data and 8-bit jpg files (P > 0.05). CONCLUSIONS: Quantitative OCT analysis is not significantly influenced by data compression. A mathematical model can correct for optical opacities to improve OCT images.
- Published
- 2008
27. Microcystic macular degeneration from optic neuropathy
- Author
-
Abegg, M., primary, Zinkernagel, M., additional, and Wolf, S., additional
- Published
- 2012
- Full Text
- View/download PDF
28. The word length effect in virtual hemianopia, real hemianopia, and alexia
- Author
-
Sheldon, C., primary, Abegg, M., additional, Sekunova, A., additional, and Barton, J., additional
- Published
- 2011
- Full Text
- View/download PDF
29. Assessment of a new Goldmann applanation tonometer
- Author
-
Egli, M, primary, Goldblum, D, additional, Kipfer, A, additional, Rohrer, K, additional, Tappeiner, C, additional, Abegg, M, additional, Berger, L, additional, Schoetzau, A, additional, and Iliev, M E, additional
- Published
- 2011
- Full Text
- View/download PDF
30. Rapid Adaptation of Visual Search in Simulated Hemianopia
- Author
-
Simpson, S. A., primary, Abegg, M., additional, and Barton, J. J. S., additional
- Published
- 2010
- Full Text
- View/download PDF
31. Short Term Adaptation of Visual Search Strategies in Simulated Hemianopia
- Author
-
Simpson, S., primary, Abegg, M., additional, and Barton, J. J., additional
- Published
- 2010
- Full Text
- View/download PDF
32. Line bisection in simulated homonymous hemianopia
- Author
-
Mitra, A., primary, Viswanathan, J., additional, Abegg, M., additional, and Barton, J., additional
- Published
- 2010
- Full Text
- View/download PDF
33. The global effect induced by "blind" distractors in visual hemifield defects
- Author
-
Van der Stigchel, S., primary, Nijboer, T. C.W., additional, Bergsma, D. D.P., additional, Abegg, M., additional, and Barton, J. J.S., additional
- Published
- 2010
- Full Text
- View/download PDF
34. Trial history biases the spatial programming of antisaccades
- Author
-
Rastgardani, T., primary, Abegg, M., additional, Lau, V., additional, and Barton, J. J S, additional
- Published
- 2010
- Full Text
- View/download PDF
35. Differential effects of partial foreknowledge on efficiency and switch costs of saccadic eye movements
- Author
-
Abegg, M., primary and Barton, J., additional
- Published
- 2010
- Full Text
- View/download PDF
36. Unilateral Papilledema after Trabeculectomy in a Patient with Intracranial Hypertension
- Author
-
Abegg, M, primary, Fleischhauer, J, additional, and Landau, K, additional
- Published
- 2008
- Full Text
- View/download PDF
37. Rise in intraocular pressure during haemodialysis in a patient with reduced outflow facility
- Author
-
Fischer, M D., primary, Fleischhauer, J., additional, Keusch, G., additional, and Abegg, M. H, additional
- Published
- 2007
- Full Text
- View/download PDF
38. Retinal Detachment in Patients with Acute Retinal Necrosis: A Case Series
- Author
-
Abegg, M, primary, Kurz-Levin, M, additional, and Helbig, H, additional
- Published
- 2007
- Full Text
- View/download PDF
39. REVIEWS
- Author
-
ABEGG, M. G., primary
- Published
- 2000
- Full Text
- View/download PDF
40. Isoflurane inhibits cardiac myocyte apoptosis during oxidative and inflammatory stress by activating Akt and enhancing Bcl-2 expression.
- Author
-
Jamnicki-Abegg M, Weihrauch D, Pagel PS, Kersten JR, Bosnjak ZJ, Warltier DC, Bienengraeber MW, Jamnicki-Abegg, Marina, Weihrauch, Dorothee, Pagel, Paul S, Kersten, Judy R, Bosnjak, Zeljko J, Warltier, David C, and Bienengraeber, Martin W
- Published
- 2005
41. Isothermal Decomposition of Explosives
- Author
-
Cook, M. A., primary and Abegg, M. Taylor, additional
- Published
- 1956
- Full Text
- View/download PDF
42. White and gray matter alterations in adults with Niemann-Pick disease type C: A cross-sectional study.
- Author
-
Scheel M, Abegg M, Lanyon LJ, Mattman A, Barton JJ, Walterfang MA, Fahey M, Wood A, Desmond P, and Velakoulis D
- Published
- 2011
- Full Text
- View/download PDF
43. Unilateral Papilledema after Trabeculectomy in a�Patient with Intracranial Hypertension.
- Author
-
Abegg, M, Fleischhauer, J, and Landau, K
- Published
- 2008
- Full Text
- View/download PDF
44. Treatment of branch retinal vein occlusion induced macular edema with bevacizumab.
- Author
-
Abegg M, Tappeiner C, Wolf-Schnurrbusch U, Barthelmes D, Wolf S, and Fleischhauer J
- Abstract
Background: Branch retinal vein occlusion is a frequent cause of visual loss with currently insufficient treatment options. We evaluate the effect of Bevacizumab (Avastin(r)) treatment in patients with macular edema induced by branch retinal vein occlusion. Methods: Retrospective analysis of 32 eyes in 32 patients with fluorescein angiography proven branch retinal vein occlusion, macular edema and Bevacizumab treatment. Outcome measures were best corrected visual acuity in logMAR and central retinal thickness in OCT. Results: Visual acuity was significantly better 4 to 6 weeks after Bevacizumab treatment compared to visual acuity prior to treatment (before 0.7 ± 0.3 and after 0.5 ± 0.3; mean ± standard deviation; p < 0.01, paired t-test). Gain in visual acuity was accompanied by a significant decrease in retinal thickness (454 ± 117 to 305 ± 129 µm, p < 0.01, paired t-test). Follow up (170, 27 - 418 days; median, range) shows that improvement for both visual acuity and retinal thickness last for several months after Bevacizumab use. Conclusion: We present evidence that intravitreal Bevacizumab is an effective and lasting treatment for macular edema after branch retinal vein occlusion. [ABSTRACT FROM AUTHOR]
- Published
- 2008
45. Co-limitation towards lower latitudes shapes global forest diversity gradients
- Author
-
Jingjing Liang, Javier G. P. Gamarra, Nicolas Picard, Mo Zhou, Bryan Pijanowski, Douglass F. Jacobs, Peter B. Reich, Thomas W. Crowther, Gert-Jan Nabuurs, Sergio de-Miguel, Jingyun Fang, Christopher W. Woodall, Jens-Christian Svenning, Tommaso Jucker, Jean-Francois Bastin, Susan K. Wiser, Ferry Slik, Bruno Hérault, Giorgio Alberti, Gunnar Keppel, Geerten M. Hengeveld, Pierre L. Ibisch, Carlos A. Silva, Hans ter Steege, Pablo L. Peri, David A. Coomes, Eric B. Searle, Klaus von Gadow, Bogdan Jaroszewicz, Akane O. Abbasi, Meinrad Abegg, Yves C. Adou Yao, Jesús Aguirre-Gutiérrez, Angelica M. Almeyda Zambrano, Jan Altman, Esteban Alvarez-Dávila, Juan Gabriel Álvarez-González, Luciana F. Alves, Bienvenu H. K. Amani, Christian A. Amani, Christian Ammer, Bhely Angoboy Ilondea, Clara Antón-Fernández, Valerio Avitabile, Gerardo A. Aymard, Akomian F. Azihou, Johan A. Baard, Timothy R. Baker, Radomir Balazy, Meredith L. Bastian, Rodrigue Batumike, Marijn Bauters, Hans Beeckman, Nithanel Mikael Hendrik Benu, Robert Bitariho, Pascal Boeckx, Jan Bogaert, Frans Bongers, Olivier Bouriaud, Pedro H. S. Brancalion, Susanne Brandl, Francis Q. Brearley, Jaime Briseno-Reyes, Eben N. Broadbent, Helge Bruelheide, Erwin Bulte, Ann Christine Catlin, Roberto Cazzolla Gatti, Ricardo G. César, Han Y. H. Chen, Chelsea Chisholm, Emil Cienciala, Gabriel D. Colletta, José Javier Corral-Rivas, Anibal Cuchietti, Aida Cuni-Sanchez, Javid A. Dar, Selvadurai Dayanandan, Thales de Haulleville, Mathieu Decuyper, Sylvain Delabye, Géraldine Derroire, Ben DeVries, John Diisi, Tran Van Do, Jiri Dolezal, Aurélie Dourdain, Graham P. Durrheim, Nestor Laurier Engone Obiang, Corneille E. N. Ewango, Teresa J. Eyre, Tom M. Fayle, Lethicia Flavine N. Feunang, Leena Finér, Markus Fischer, Jonas Fridman, Lorenzo Frizzera, André L. de Gasper, Damiano Gianelle, Henry B. Glick, Maria Socorro Gonzalez-Elizondo, Lev Gorenstein, Richard Habonayo, Olivier J. Hardy, David J. Harris, Andrew Hector, Andreas Hemp, Martin Herold, Annika Hillers, Wannes Hubau, Thomas Ibanez, Nobuo Imai, Gerard Imani, Andrzej M. Jagodzinski, Stepan Janecek, Vivian Kvist Johannsen, Carlos A. Joly, Blaise Jumbam, Banoho L. P. R. Kabelong, Goytom Abraha Kahsay, Viktor Karminov, Kuswata Kartawinata, Justin N. Kassi, Elizabeth Kearsley, Deborah K. Kennard, Sebastian Kepfer-Rojas, Mohammed Latif Khan, John N. Kigomo, Hyun Seok Kim, Carine Klauberg, Yannick Klomberg, Henn Korjus, Subashree Kothandaraman, Florian Kraxner, Amit Kumar, Relawan Kuswandi, Mait Lang, Michael J. Lawes, Rodrigo V. Leite, Geoffrey Lentner, Simon L. Lewis, Moses B. Libalah, Janvier Lisingo, Pablito Marcelo López-Serrano, Huicui Lu, Natalia V. Lukina, Anne Mette Lykke, Vincent Maicher, Brian S. Maitner, Eric Marcon, Andrew R. Marshall, Emanuel H. Martin, Olga Martynenko, Faustin M. Mbayu, Musingo T. E. Mbuvi, Jorge A. Meave, Cory Merow, Stanislaw Miscicki, Vanessa S. Moreno, Albert Morera, Sharif A. Mukul, Jörg C. Müller, Agustinus Murdjoko, Maria Guadalupe Nava-Miranda, Litonga Elias Ndive, Victor J. Neldner, Radovan V. Nevenic, Louis N. Nforbelie, Michael L. Ngoh, Anny E. N’Guessan, Michael R. Ngugi, Alain S. K. Ngute, Emile Narcisse N. Njila, Melanie C. Nyako, Thomas O. Ochuodho, Jacek Oleksyn, Alain Paquette, Elena I. Parfenova, Minjee Park, Marc Parren, Narayanaswamy Parthasarathy, Sebastian Pfautsch, Oliver L. Phillips, Maria T. F. Piedade, Daniel Piotto, Martina Pollastrini, Lourens Poorter, John R. Poulsen, Axel Dalberg Poulsen, Hans Pretzsch, Mirco Rodeghiero, Samir G. Rolim, Francesco Rovero, Ervan Rutishauser, Khosro Sagheb-Talebi, Purabi Saikia, Moses Nsanyi Sainge, Christian Salas-Eljatib, Antonello Salis, Peter Schall, Dmitry Schepaschenko, Michael Scherer-Lorenzen, Bernhard Schmid, Jochen Schöngart, Vladimír Šebeň, Giacomo Sellan, Federico Selvi, Josep M. Serra-Diaz, Douglas Sheil, Anatoly Z. Shvidenko, Plinio Sist, Alexandre F. Souza, Krzysztof J. Stereńczak, Martin J. P. Sullivan, Somaiah Sundarapandian, Miroslav Svoboda, Mike D. Swaine, Natalia Targhetta, Nadja Tchebakova, Liam A. Trethowan, Robert Tropek, John Tshibamba Mukendi, Peter Mbanda Umunay, Vladimir A. Usoltsev, Gaia Vaglio Laurin, Riccardo Valentini, Fernando Valladares, Fons van der Plas, Daniel José Vega-Nieva, Hans Verbeeck, Helder Viana, Alexander C. Vibrans, Simone A. Vieira, Jason Vleminckx, Catherine E. Waite, Hua-Feng Wang, Eric Katembo Wasingya, Chemuku Wekesa, Bertil Westerlund, Florian Wittmann, Verginia Wortel, Tomasz Zawiła-Niedźwiecki, Chunyu Zhang, Xiuhai Zhao, Jun Zhu, Xiao Zhu, Zhi-Xin Zhu, Irie C. Zo-Bi, Cang Hui, Liang, Jingjing, Gamarra, Javier GP, Picard, Nicolas, Zhou, Mo, Keppel, Gunnar, Hui, Cang, Liang J., Gamarra J.G.P., Picard N., Zhou M., Pijanowski B., Jacobs D.F., Reich P.B., Crowther T.W., Nabuurs G.-J., de-Miguel S., Fang J., Woodall C.W., Svenning J.-C., Jucker T., Bastin J.-F., Wiser S.K., Slik F., Herault B., Alberti G., Keppel G., Hengeveld G.M., Ibisch P.L., Silva C.A., ter Steege H., Peri P.L., Coomes D.A., Searle E.B., von Gadow K., Jaroszewicz B., Abbasi A.O., Abegg M., Yao Y.C.A., Aguirre-Gutierrez J., Zambrano A.M.A., Altman J., Alvarez-Davila E., Alvarez-Gonzalez J.G., Alves L.F., Amani B.H.K., Amani C.A., Ammer C., Ilondea B.A., Anton-Fernandez C., Avitabile V., Aymard G.A., Azihou A.F., Baard J.A., Baker T.R., Balazy R., Bastian M.L., Batumike R., Bauters M., Beeckman H., Benu N.M.H., Bitariho R., Boeckx P., Bogaert J., Bongers F., Bouriaud O., Brancalion P.H.S., Brandl S., Brearley F.Q., Briseno-Reyes J., Broadbent E.N., Bruelheide H., Bulte E., Catlin A.C., Cazzolla Gatti R., Cesar R.G., Chen H.Y.H., Chisholm C., Cienciala E., Colletta G.D., Corral-Rivas J.J., Cuchietti A., Cuni-Sanchez A., Dar J.A., Dayanandan S., de Haulleville T., Decuyper M., Delabye S., Derroire G., DeVries B., Diisi J., Do T.V., Dolezal J., Dourdain A., Durrheim G.P., Obiang N.L.E., Ewango C.E.N., Eyre T.J., Fayle T.M., Feunang L.F.N., Finer L., Fischer M., Fridman J., Frizzera L., de Gasper A.L., Gianelle D., Glick H.B., Gonzalez-Elizondo M.S., Gorenstein L., Habonayo R., Hardy O.J., Harris D.J., Hector A., Hemp A., Herold M., Hillers A., Hubau W., Ibanez T., Imai N., Imani G., Jagodzinski A.M., Janecek S., Johannsen V.K., Joly C.A., Jumbam B., Kabelong B.L.P.R., Kahsay G.A., Karminov V., Kartawinata K., Kassi J.N., Kearsley E., Kennard D.K., Kepfer-Rojas S., Khan M.L., Kigomo J.N., Kim H.S., Klauberg C., Klomberg Y., Korjus H., Kothandaraman S., Kraxner F., Kumar A., Kuswandi R., Lang M., Lawes M.J., Leite R.V., Lentner G., Lewis S.L., Libalah M.B., Lisingo J., Lopez-Serrano P.M., Lu H., Lukina N.V., Lykke A.M., Maicher V., Maitner B.S., Marcon E., Marshall A.R., Martin E.H., Martynenko O., Mbayu F.M., Mbuvi M.T.E., Meave J.A., Merow C., Miscicki S., Moreno V.S., Morera A., Mukul S.A., Muller J.C., Murdjoko A., Nava-Miranda M.G., Ndive L.E., Neldner V.J., Nevenic R.V., Nforbelie L.N., Ngoh M.L., N'Guessan A.E., Ngugi M.R., Ngute A.S.K., Njila E.N.N., Nyako M.C., Ochuodho T.O., Oleksyn J., Paquette A., Parfenova E.I., Park M., Parren M., Parthasarathy N., Pfautsch S., Phillips O.L., Piedade M.T.F., Piotto D., Pollastrini M., Poorter L., Poulsen J.R., Poulsen A.D., Pretzsch H., Rodeghiero M., Rolim S.G., Rovero F., Rutishauser E., Sagheb-Talebi K., Saikia P., Sainge M.N., Salas-Eljatib C., Salis A., Schall P., Schepaschenko D., Scherer-Lorenzen M., Schmid B., Schongart J., Seben V., Sellan G., Selvi F., Serra-Diaz J.M., Sheil D., Shvidenko A.Z., Sist P., Souza A.F., Sterenczak K.J., Sullivan M.J.P., Sundarapandian S., Svoboda M., Swaine M.D., Targhetta N., Tchebakova N., Trethowan L.A., Tropek R., Mukendi J.T., Umunay P.M., Usoltsev V.A., Vaglio Laurin G., Valentini R., Valladares F., van der Plas F., Vega-Nieva D.J., Verbeeck H., Viana H., Vibrans A.C., Vieira S.A., Vleminckx J., Waite C.E., Wang H.-F., Wasingya E.K., Wekesa C., Westerlund B., Wittmann F., Wortel V., Zawila-Niedzwiecki T., Zhang C., Zhao X., Zhu J., Zhu X., Zhu Z.-X., Zo-Bi I.C., Hui C., Purdue University [West Lafayette], Food and Agriculture Organization of the United Nations [Rome, Italie] (FAO), Groupement d'Interêt Public Ecosystèmes Forestiers GIP ECOFOR (GIP ECOFOR ), Forêts et Sociétés (UPR Forêts et Sociétés), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), Département Environnements et Sociétés (Cirad-ES), Ecologie des forêts de Guyane (UMR ECOFOG), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-AgroParisTech-Université de Guyane (UG)-Centre National de la Recherche Scientifique (CNRS)-Université des Antilles (UA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Territoires, Environnement, Télédétection et Information Spatiale (UMR TETIS), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-AgroParisTech-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Botanique et Modélisation de l'Architecture des Plantes et des Végétations (UMR AMAP), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université de Montpellier (UM), SILVA (SILVA), AgroParisTech-Université de Lorraine (UL)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut National Polytechnique Félix Houphouët-Boigny, and Stellenbosch University
- Subjects
Bos- en Landschapsecologie ,WASS ,Plant Ecology and Nature Conservation ,Forests ,[SDV.BID.SPT]Life Sciences [q-bio]/Biodiversity/Systematics, Phylogenetics and taxonomy ,Co-limitation ,Ontwikkelingseconomie ,Forest and Nature Conservation Policy ,Trees ,Soil ,[SDV.EE.ECO]Life Sciences [q-bio]/Ecology, environment/Ecosystems ,Development Economics ,Laboratory of Geo-information Science and Remote Sensing ,Settore BIO/07 - ECOLOGIA ,Life Science ,Laboratorium voor Moleculaire Biologie ,Bos- en Natuurbeleid ,Forest and Landscape Ecology ,Bosecologie en Bosbeheer ,Laboratorium voor Geo-informatiekunde en Remote Sensing ,BIOS Plant Development Systems ,Vegetatie ,Ecology, Evolution, Behavior and Systematics ,biogeography ,biodiversity ,Vegetation ,Ecology ,Biodiversity ,[SDV.BV.BOT]Life Sciences [q-bio]/Vegetal Biology/Botanics ,Latitudinal gradients ,PE&RC ,Forest Ecology and Forest Management ,Bioclimatic dominance ,Biogeography ,LATITUDE ,Plantenecologie en Natuurbeheer ,Vegetatie, Bos- en Landschapsecologie ,Vegetation, Forest and Landscape Ecology ,Laboratory of Molecular Biology ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology ,Corporate Governance & Legal Services ,Tree ,Global LDG - Abstract
The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025° × 0.025°) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from ~1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers. The team collaboration and manuscript development are supported by the web-based team science platform: science-i.org, with the project number 202205GFB2. We thank the following initiatives, agencies, teams and individuals for data collection and other technical support: the Global Forest Biodiversity Initiative (GFBI) for establishing the data standards and collaborative framework; United States Department of Agriculture, Forest Service, Forest Inventory and Analysis (FIA) Program; University of Alaska Fairbanks; the SODEFOR, Ivory Coast; University Félix Houphouët-Boigny (UFHB, Ivory Coast); the Queensland Herbarium and past Queensland Government Forestry and Natural Resource Management departments and staff for data collection for over seven decades; and the National Forestry Commission of Mexico (CONAFOR). We thank M. Baker (Carbon Tanzania), together with a team of field assistants (Valentine and Lawrence); all persons who made the Third Spanish Forest Inventory possible, especially the main coordinator, J. A. Villanueva (IFN3); the French National Forest Inventory (NFI campaigns (raw data 2005 and following annual surveys, were downloaded by GFBI at https://inventaire-forestier.ign.fr/spip.php?rubrique159; site accessed on 1 January 2015)); the Italian Forest Inventory (NFI campaigns raw data 2005 and following surveys were downloaded by GFBI at https://inventarioforestale.org/; site accessed on 27 April 2019); Swiss National Forest Inventory, Swiss Federal Institute for Forest, Snow and Landscape Research WSL and Federal Office for the Environment FOEN, Switzerland; the Swedish NFI, Department of Forest Resource Management, Swedish University of Agricultural Sciences SLU; the National Research Foundation (NRF) of South Africa (89967 and 109244) and the South African Research Chair Initiative; the Danish National Forestry, Department of Geosciences and Natural Resource Management, UCPH; Coordination for the Improvement of Higher Education Personnel of Brazil (CAPES, grant number 88881.064976/2014-01); R. Ávila and S. van Tuylen, Instituto Nacional de Bosques (INAB), Guatemala, for facilitating Guatemalan data; the National Focal Center for Forest condition monitoring of Serbia (NFC), Institute of Forestry, Belgrade, Serbia; the Thünen Institute of Forest Ecosystems (Germany) for providing National Forest Inventory data; the FAO and the United Nations High Commissioner for Refugees (UNHCR) for undertaking the SAFE (Safe Access to Fuel and Energy) and CBIT-Forest projects; and the Amazon Forest Inventory Network (RAINFOR), the African Tropical Rainforest Observation Network (AfriTRON) and the ForestPlots.net initiative for their contributions from Amazonian and African forests. The Natural Forest plot data collected between January 2009 and March 2014 by the LUCAS programme for the New Zealand Ministry for the Environment are provided by the New Zealand National Vegetation Survey Databank https://nvs.landcareresearch.co.nz/. We thank the International Boreal Forest Research Association (IBFRA); the Forestry Corporation of New South Wales, Australia; the National Forest Directory of the Ministry of Environment and Sustainable Development of the Argentine Republic (MAyDS) for the plot data of the Second National Forest Inventory (INBN2); the National Forestry Authority and Ministry of Water and Environment of Uganda for their National Biomass Survey (NBS) dataset; and the Sabah Biodiversity Council and the staff from Sabah Forest Research Centre. All TEAM data are provided by the Tropical Ecology Assessment and Monitoring (TEAM) Network, a collaboration between Conservation International, the Missouri Botanical Garden, the Smithsonian Institution and the Wildlife Conservation Society, and partially funded by these institutions, the Gordon and Betty Moore Foundation and other donors, with thanks to all current and previous TEAM site manager and other collaborators that helped collect data. We thank the people of the Redidoti, Pierrekondre and Cassipora village who were instrumental in assisting with the collection of data and sharing local knowledge of their forest and the dedicated members of the field crew of Kabo 2012 census. We are also thankful to FAPESC, SFB, FAO and IMA/SC for supporting the IFFSC. This research was supported in part through computational resources provided by Information Technology at Purdue, West Lafayette, Indiana.This work is supported in part by the NASA grant number 12000401 ‘Multi-sensor biodiversity framework developed from bioacoustic and space based sensor platforms’ (J. Liang, B.P.); the USDA National Institute of Food and Agriculture McIntire Stennis projects 1017711 (J. Liang) and 1016676 (M.Z.); the US National Science Foundation Biological Integration Institutes grant NSF‐DBI‐2021898 (P.B.R.); the funding by H2020 VERIFY (contract 776810) and H2020 Resonate (contract 101000574) (G.-J.N.); the TEAM project in Uganda supported by the Moore foundation and Buffett Foundation through Conservation International (CI) and Wildlife Conservation Society (WCS); the Danish Council for Independent Research | Natural Sciences (TREECHANGE, grant 6108- 00078B) and VILLUM FONDEN grant number 16549 (J.-C.S.); the Natural Environment Research Council of the UK (NERC) project NE/T011084/1 awarded to J.A.-G. and NE/S011811/1; ERC Advanced Grant 291585 (‘T-FORCES’) and a Royal Society-Wolfson Research Merit Award (O.L.P.); RAINFOR plots supported by the Gordon and Betty Moore Foundation and the UK Natural Environment Research Council, notably NERC Consortium Grants ‘AMAZONICA’ (NE/F005806/1), ‘TROBIT’ (NE/D005590/1) and ‘BIO-RED’ (NE/N012542/1); CIFOR’s Global Comparative Study on REDD+ funded by the Norwegian Agency for Development Cooperation, the Australian Department of Foreign Affairs and Trade, the European Union, the International Climate Initiative (IKI) of the German Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety and the CGIAR Research Program on Forests, Trees and Agroforestry (CRP-FTA) and donors to the CGIAR Fund; AfriTRON network plots funded by the local communities and NERC, ERC, European Union, Royal Society and Leverhume Trust; a grant from the Royal Society and the Natural Environment Research Council, UK (S.L.L.); National Science Foundation CIF21 DIBBs: EI: number 1724728 (A.C.C.); National Natural Science Foundation of China (31800374) and Shandong Provincial Natural Science Foundation (ZR2019BC083) (H.L.). UK NERC Independent Research Fellowship (grant code: NE/S01537X/1) (T.J.); a Serra-Húnter Fellowship provided by the Government of Catalonia (Spain) (S.d.-M.); the Brazilian National Council for Scientific and Technological Development (CNPq, grant 442640/2018-8, CNPq/Prevfogo-Ibama number 33/2018) (C.A.S.); a grant from the Franklinia Foundation (D.A.C.); Russian Science Foundation project number 19-77-300-12 (R.V.); the Takenaka Scholarship Foundation (A.O.A.); the German Research Foundation (DFG), grant number Am 149/16-4 (C.A.); the Romania National Council for Higher Education Funding, CNFIS, project number CNFIS-FDI-2022-0259 (O.B.); Natural Sciences and Engineering Research Council of Canada (RGPIN-2019-05109 and STPGP506284) and the Canadian Foundation for Innovation (36014) (H.Y.H.C.); the project SustES—Adaptation strategies for sustainable ecosystem services and food security under adverse environmental conditions (CZ.02.1.01/0.0/0.0/16_019/0000797) (E.C.); Consejo de Ciencia y Tecnología del estado de Durango (2019-01-155) (J.J.C.-R.); Science and Engineering Research Board (SERB), New Delhi, Government of India (file number PDF/2015/000447)— ‘Assessing the carbon sequestration potential of different forest types in Central India in response to climate change’ (J.A.D.); Investissement d’avenir grant of the ANR (CEBA: ANR-10-LABEX-0025) (G.D.); National Foundation for Science & Technology Development of Vietnam, 106-NN.06-2013.01 (T.V.D.); Queensland government, Department of Environment and Science (T.J.E.); a Czech Science Foundation Standard grant (19-14620S) (T.M.F.); European Union Seventh Framework Program (FP7/2007– 2013) under grant agreement number 265171 (L. Finer, M. Pollastrini, F. Selvi); grants from the Swedish National Forest Inventory, Swedish University of Agricultural Sciences (J.F.); CNPq productivity grant number 311303/2020-0 (A.L.d.G.); DFG grant HE 2719/11-1,2,3; HE 2719/14-1 (A. Hemp); European Union’s Horizon Europe research project OpenEarthMonitor grant number 101059548, CGIAR Fund INIT-32-MItigation and Transformation Initiative for GHG reductions of Agrifood systems RelaTed Emissions (MITIGATE+) (M.H.); General Directorate of the State Forests, Poland (1/07; OR-2717/3/11; OR.271.3.3.2017) and the National Centre for Research and Development, Poland (BIOSTRATEG1/267755/4/NCBR/2015) (A.M.J.); Czech Science Foundation 18-10781 S (S.J.); Danish of Ministry of Environment, the Danish Environmental Protection Agency, Integrated Forest Monitoring Program—NFI (V.K.J.); State of São Paulo Research Foundation/FAPESP as part of the BIOTA/FAPESP Program Project Functional Gradient-PELD/BIOTA-ECOFOR 2003/12595-7 & 2012/51872-5 (C.A.J.); Danish Council for Independent Research—social sciences—grant DFF 6109– 00296 (G.A.K.); Russian Science Foundation project 21-46-07002 for the plot data collected in the Krasnoyarsk region (V.K.); BOLFOR (D.K.K.); Department of Biotechnology, New Delhi, Government of India (grant number BT/PR7928/ NDB/52/9/2006, dated 29 September 2006) (M.L.K.); grant from Kenya Coastal Development Project (KCDP), which was funded by World Bank (J.N.K.); Korea Forest Service (2018113A00-1820-BB01, 2013069A00-1819-AA03, and 2020185D10- 2022-AA02) and Seoul National University Big Data Institute through the Data Science Research Project 2016 (H.S.K.); the Brazilian National Council for Scientific and Technological Development (CNPq, grant 442640/2018-8, CNPq/Prevfogo-Ibama number 33/2018) (C.K.); CSIR, New Delhi, government of India (grant number 38(1318)12/EMR-II, dated: 3 April 2012) (S.K.); Department of Biotechnology, New Delhi, government of India (grant number BT/ PR12899/ NDB/39/506/2015 dated 20 June 2017) (A.K.); Coordination for the Improvement of Higher Education Personnel (CAPES) #88887.463733/2019-00 (R.V.L.); National Natural Science Foundation of China (31800374) (H.L.); project of CEPF RAS ‘Methodological approaches to assessing the structural organization and functioning of forest ecosystems’ (AAAA-A18-118052590019-7) funded by the Ministry of Science and Higher Education of Russia (N.V.L.); Leverhulme Trust grant to Andrew Balmford, Simon Lewis and Jon Lovett (A.R.M.); Russian Science Foundation, project 19-77-30015 for European Russia data processing (O.M.); grant from Kenya Coastal Development Project (KCDP), which was funded by World Bank (M.T.E.M.); the National Centre for Research and Development, Poland (BIOSTRATEG1/267755/4/NCBR/2015) (S.M.); the Secretariat for Universities and of the Ministry of Business and Knowledge of the Government of Catalonia and the European Social Fund (A. Morera); Queensland government, Department of Environment and Science (V.J.N.); Pinnacle Group Cameroon PLC (L.N.N.); Queensland government, Department of Environment and Science (M.R.N.); the Natural Sciences and Engineering Research Council of Canada (RGPIN-2018-05201) (A.P.); the Russian Foundation for Basic Research, project number 20-05-00540 (E.I.P.); European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement number 778322 (H.P.); Science and Engineering Research Board, New Delhi, government of India (grant number YSS/2015/000479, dated 12 January 2016) (P.S.); the Chilean Government research grants Fondecyt number 1191816 and FONDEF number ID19 10421 (C.S.-E.); the Deutsche Forschungsgemeinschaft (DFG) Priority Program 1374 Biodiversity Exploratories (P.S.); European Space Agency projects IFBN (4000114425/15/NL/FF/gp) and CCI Biomass (4000123662/18/I-NB) (D. Schepaschenko); FunDivEUROPE, European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement number 265171 (M.S.-L.); APVV 20-0168 from the Slovak Research and Development Agency (V.S.); Manchester Metropolitan University’s Environmental Science Research Centre (G.S.); the project ‘LIFE+ ForBioSensing PL Comprehensive monitoring of stand dynamics in Białowieża Forest supported with remote sensing techniques’ which is co-funded by the EU Life Plus programme (contract number LIFE13 ENV/PL/000048) and the National Fund for Environmental Protection and Water Management in Poland (contract number 485/2014/WN10/OP-NM-LF/D) (K.J.S.); Global Challenges Research Fund (QR allocation, MMU) (M.J.P.S.); Czech Science Foundation project 21-27454S (M.S.); the Russian Foundation for Basic Research, project number 20-05-00540 (N. Tchebakova); Botanical Research Fund, Coalbourn Trust, Bentham Moxon Trust, Emily Holmes scholarship (L.A.T.); the programmes of the current scientific research of the Botanical Garden of the Ural Branch of Russian Academy of Sciences (V.A.U.); FCT—Portuguese Foundation for Science and Technology—Project UIDB/04033/2020. Inventário Florestal Nacional—ICNF (H. Viana); Grant from Kenya Coastal Development Project (KCDP), which was funded by World Bank (C.W.); grants from the Swedish National Forest Inventory, Swedish University of Agricultural Sciences (B.W.); ATTO project (grant number MCTI-FINEP 1759/10 and BMBF 01LB1001A, 01LK1602F) (F.W.); ReVaTene/ PReSeD-CI 2 is funded by the Education and Research Ministry of Côte d’Ivoire, as part of the Debt Reduction-Development Contracts (C2Ds) managed by IRD (I.C.Z.-B.); the National Research Foundation of South Africa (NRF, grant 89967) (C.H.). The Tropical Plant Exploration Group 70 1 ha plots in Continental Cameroon Mountains are supported by Rufford Small Grant Foundation, UK and 4 ha in Sierra Leone are supported by the Global Challenge Research Fund through Manchester Metropolitan University, UK; the National Geographic Explorer Grant, NGS-53344R-18 (A.C.-S.); University of KwaZulu-Natal Research Office grant (M.J.L.); Universidad Nacional Autónoma de México, Dirección General de Asuntos de Personal Académico, Grant PAPIIT IN-217620 (J.A.M.). Czech Science Foundation project 21-24186M (R.T., S. Delabye). Czech Science Foundation project 20-05840Y, the Czech Ministry of Education, Youth and Sports (LTAUSA19137) and the long-term research development project of the Czech Academy of Sciences no. RVO 67985939 (J.A.). The American Society of Primatologists, the Duke University Graduate School, the L.S.B. Leakey Foundation, the National Science Foundation (grant number 0452995) and the Wenner-Gren Foundation for Anthropological Research (grant number 7330) (M.B.). Research grants from Conselho Nacional de Desenvolvimento Científico e Tecnologico (CNPq, Brazil) (309764/2019; 311303/2020) (A.C.V., A.L.G.). The Project of Sanya Yazhou Bay Science and Technology City (grant number CKJ-JYRC-2022-83) (H.-F.W.). The Ugandan NBS was supported with funds from the Forest Carbon Partnership Facility (FCPF), the Austrian Development Agency (ADC) and FAO. FAO’s UN-REDD Program, together with the project on ‘Native Forests and Community’ Loan BIRF number 8493-AR UNDP ARG/15/004 and the National Program for the Protection of Native Forests under UNDP funded Argentina’s INBN2.
- Published
- 2022
46. Treatment of Branch Retinal Vein Occlusion induced Macular Edema with Bevacizumab
- Author
-
Mathias Abegg, Ute E. K. Wolf-Schnurrbusch, Daniel Barthelmes, Christoph Tappeiner, Johannes Fleischhauer, Sebastian Wolf, University of Zurich, and Abegg, M
- Subjects
Male ,Vascular Endothelial Growth Factor A ,Time Factors ,Visual acuity ,genetic structures ,Visual Acuity ,chemistry.chemical_compound ,lcsh:Ophthalmology ,Fluorescein Angiography ,Aged, 80 and over ,medicine.diagnostic_test ,Antibodies, Monoclonal ,General Medicine ,Middle Aged ,Fluorescein angiography ,2731 Ophthalmology ,Bevacizumab ,Treatment Outcome ,medicine.anatomical_structure ,cardiovascular system ,Female ,medicine.symptom ,Tomography, Optical Coherence ,Research Article ,medicine.drug ,10018 Ophthalmology Clinic ,medicine.medical_specialty ,610 Medicine & health ,Antibodies, Monoclonal, Humanized ,Macular Edema ,Retina ,Injections ,Ophthalmology ,Retinal Vein Occlusion ,medicine ,Humans ,Intravitreal bevacizumab ,Macular edema ,Aged ,Retrospective Studies ,business.industry ,Retinal ,medicine.disease ,eye diseases ,Surgery ,Vitreous Body ,chemistry ,lcsh:RE1-994 ,Branch retinal vein occlusion ,sense organs ,business - Abstract
Background Branch retinal vein occlusion is a frequent cause of visual loss with currently insufficient treatment options. We evaluate the effect of Bevacizumab (Avastin®) treatment in patients with macular edema induced by branch retinal vein occlusion. Methods Retrospective analysis of 32 eyes in 32 patients with fluorescein angiography proven branch retinal vein occlusion, macular edema and Bevacizumab treatment. Outcome measures were best corrected visual acuity in logMAR and central retinal thickness in OCT. Results Visual acuity was significantly better 4 to 6 weeks after Bevacizumab treatment compared to visual acuity prior to treatment (before 0.7 ± 0.3 and after 0.5 ± 0.3; mean ± standard deviation; p < 0.01, paired t-test). Gain in visual acuity was accompanied by a significant decrease in retinal thickness (454 ± 117 to 305 ± 129 μm, p < 0.01, paired t-test). Follow up (170, 27 – 418 days; median, range) shows that improvement for both visual acuity and retinal thickness last for several months after Bevacizumab use. Conclusion We present evidence that intravitreal Bevacizumab is an effective and lasting treatment for macular edema after branch retinal vein occlusion.
- Full Text
- View/download PDF
47. The global distribution and drivers of wood density and their impact on forest carbon stocks.
- Author
-
Mo L, Crowther TW, Maynard DS, van den Hoogen J, Ma H, Bialic-Murphy L, Liang J, de-Miguel S, Nabuurs GJ, Reich PB, Phillips OL, Abegg M, Adou Yao YC, Alberti G, Almeyda Zambrano AM, Alvarado BV, Alvarez-Dávila E, Alvarez-Loayza P, Alves LF, Amaral I, Ammer C, Antón-Fernández C, Araujo-Murakami A, Arroyo L, Avitabile V, Aymard GA, Baker TR, Bałazy R, Banki O, Barroso JG, Bastian ML, Bastin JF, Birigazzi L, Birnbaum P, Bitariho R, Boeckx P, Bongers F, Boonman CCF, Bouriaud O, Brancalion PHS, Brandl S, Brearley FQ, Brienen R, Broadbent EN, Bruelheide H, Bussotti F, Gatti RC, César RG, Cesljar G, Chazdon R, Chen HYH, Chisholm C, Cho H, Cienciala E, Clark C, Clark D, Colletta GD, Coomes DA, Valverde FC, Corral-Rivas JJ, Crim PM, Cumming JR, Dayanandan S, de Gasper AL, Decuyper M, Derroire G, DeVries B, Djordjevic I, Dolezal J, Dourdain A, Engone Obiang NL, Enquist BJ, Eyre TJ, Fandohan AB, Fayle TM, Feldpausch TR, Ferreira LV, Finér L, Fischer M, Fletcher C, Frizzera L, Gamarra JGP, Gianelle D, Glick HB, Harris DJ, Hector A, Hemp A, Hengeveld G, Hérault B, Herbohn JL, Herold M, Hietz P, Hillers A, Honorio Coronado EN, Hui C, Ibanez T, Imai N, Jagodziński AM, Jaroszewicz B, Johannsen VK, Joly CA, Jucker T, Jung I, Karminov V, Kartawinata K, Kearsley E, Kenfack D, Kennard DK, Kepfer-Rojas S, Keppel G, Khan ML, Killeen TJ, Kim HS, Kitayama K, Köhl M, Korjus H, Kraxner F, Kucher D, Laarmann D, Lang M, Lewis SL, Li Y, Lopez-Gonzalez G, Lu H, Lukina NV, Maitner BS, Malhi Y, Marcon E, Marimon BS, Marimon-Junior BH, Marshall AR, Martin EH, McCarthy JK, Meave JA, Melo-Cruz O, Mendoza C, Mendoza-Polo I, Miscicki S, Merow C, Mendoza AM, Moreno VS, Mukul SA, Mundhenk P, Nava-Miranda MG, Neill D, Neldner VJ, Nevenic RV, Ngugi MR, Niklaus PA, Ontikov P, Ortiz-Malavasi E, Pan Y, Paquette A, Parada-Gutierrez A, Parfenova EI, Park M, Parren M, Parthasarathy N, Peri PL, Pfautsch S, Picard N, Piedade MTF, Piotto D, Pitman NCA, Poorter L, Poulsen AD, Poulsen JR, Pretzsch H, Arevalo FR, Restrepo-Correa Z, Richardson SJ, Rodeghiero M, Rolim SG, Roopsind A, Rovero F, Rutishauser E, Saikia P, Salas-Eljatib C, Saner P, Schall P, Schelhaas MJ, Schepaschenko D, Scherer-Lorenzen M, Schmid B, Schöngart J, Searle EB, Seben V, Serra-Diaz JM, Sheil D, Shvidenko AZ, Da Silva AC, Silva-Espejo JE, Silveira M, Singh J, Sist P, Slik F, Sonké B, Sosinski EE Jr, Souza AF, Stereńczak KJ, Svenning JC, Svoboda M, Swanepoel B, Targhetta N, Tchebakova N, Ter Steege H, Thomas R, Tikhonova E, Umunay PM, Usoltsev VA, Valencia R, Valladares F, Van Bodegom PM, van der Plas F, Van Do T, van Nuland ME, Vasquez RM, Verbeeck H, Viana H, Vibrans AC, Vieira S, von Gadow K, Wang HF, Watson JV, Werner GDA, Wittmann F, Woell H, Wortel V, Zagt R, Zawiła-Niedźwiecki T, Zhang C, Zhao X, Zhou M, Zhu ZX, Zo-Bi IC, and Zohner CM
- Abstract
The density of wood is a key indicator of the carbon investment strategies of trees, impacting productivity and carbon storage. Despite its importance, the global variation in wood density and its environmental controls remain poorly understood, preventing accurate predictions of global forest carbon stocks. Here we analyse information from 1.1 million forest inventory plots alongside wood density data from 10,703 tree species to create a spatially explicit understanding of the global wood density distribution and its drivers. Our findings reveal a pronounced latitudinal gradient, with wood in tropical forests being up to 30% denser than that in boreal forests. In both angiosperms and gymnosperms, hydrothermal conditions represented by annual mean temperature and soil moisture emerged as the primary factors influencing the variation in wood density globally. This indicates similar environmental filters and evolutionary adaptations among distinct plant groups, underscoring the essential role of abiotic factors in determining wood density in forest ecosystems. Additionally, our study highlights the prominent role of disturbance, such as human modification and fire risk, in influencing wood density at more local scales. Factoring in the spatial variation of wood density notably changes the estimates of forest carbon stocks, leading to differences of up to 21% within biomes. Therefore, our research contributes to a deeper understanding of terrestrial biomass distribution and how environmental changes and disturbances impact forest ecosystems., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
48. A dataset of 40'000 trees with section-wise measured stem diameter and branch volume from across Switzerland.
- Author
-
Didion M, Herold A, Thürig E, Topuz S, Vulovic Z, Abegg M, Nitzsche J, Stillhard J, and Glatthorn J
- Subjects
- Switzerland, Plant Stems anatomy & histology, Forests, Trees
- Abstract
Estimating growing stock is one of the main objectives of forest inventories. It refers to the stem volume of individual trees which is typically derived by models as it cannot be easily measured directly. These models are thus based on measurable tree dimensions and their parameterization depends on the available empirical data. Historically, such data were collected by measurements of tree stem sizes, which is very time- and cost-intensive. Here, we present an exceptionally large dataset with section-wise stem measurements on 40'349 felled individual trees collected on plots of the Experimental Forest Management project. It is a revised and expanded version of previously unpublished data and contains the empirically derived coarse (diameter ≥7 cm) and fine branch volume of 27'297 and 18'980, respectively, individual trees. The data were collected between 1888 and 1974 across Switzerland covering a large topographic gradient and a diverse species range and can thus support estimations and verification of volume functions also outside Switzerland including the derivation of whole tree volume in a consistent manner., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
49. Integrated global assessment of the natural forest carbon potential.
- Author
-
Mo L, Zohner CM, Reich PB, Liang J, de Miguel S, Nabuurs GJ, Renner SS, van den Hoogen J, Araza A, Herold M, Mirzagholi L, Ma H, Averill C, Phillips OL, Gamarra JGP, Hordijk I, Routh D, Abegg M, Adou Yao YC, Alberti G, Almeyda Zambrano AM, Alvarado BV, Alvarez-Dávila E, Alvarez-Loayza P, Alves LF, Amaral I, Ammer C, Antón-Fernández C, Araujo-Murakami A, Arroyo L, Avitabile V, Aymard GA, Baker TR, Bałazy R, Banki O, Barroso JG, Bastian ML, Bastin JF, Birigazzi L, Birnbaum P, Bitariho R, Boeckx P, Bongers F, Bouriaud O, Brancalion PHS, Brandl S, Brearley FQ, Brienen R, Broadbent EN, Bruelheide H, Bussotti F, Cazzolla Gatti R, César RG, Cesljar G, Chazdon RL, Chen HYH, Chisholm C, Cho H, Cienciala E, Clark C, Clark D, Colletta GD, Coomes DA, Cornejo Valverde F, Corral-Rivas JJ, Crim PM, Cumming JR, Dayanandan S, de Gasper AL, Decuyper M, Derroire G, DeVries B, Djordjevic I, Dolezal J, Dourdain A, Engone Obiang NL, Enquist BJ, Eyre TJ, Fandohan AB, Fayle TM, Feldpausch TR, Ferreira LV, Finér L, Fischer M, Fletcher C, Frizzera L, Gianelle D, Glick HB, Harris DJ, Hector A, Hemp A, Hengeveld G, Hérault B, Herbohn JL, Hillers A, Honorio Coronado EN, Hui C, Ibanez T, Imai N, Jagodziński AM, Jaroszewicz B, Johannsen VK, Joly CA, Jucker T, Jung I, Karminov V, Kartawinata K, Kearsley E, Kenfack D, Kennard DK, Kepfer-Rojas S, Keppel G, Khan ML, Killeen TJ, Kim HS, Kitayama K, Köhl M, Korjus H, Kraxner F, Kucher D, Laarmann D, Lang M, Lu H, Lukina NV, Maitner BS, Malhi Y, Marcon E, Marimon BS, Marimon-Junior BH, Marshall AR, Martin EH, Meave JA, Melo-Cruz O, Mendoza C, Mendoza-Polo I, Miscicki S, Merow C, Monteagudo Mendoza A, Moreno VS, Mukul SA, Mundhenk P, Nava-Miranda MG, Neill D, Neldner VJ, Nevenic RV, Ngugi MR, Niklaus PA, Oleksyn J, Ontikov P, Ortiz-Malavasi E, Pan Y, Paquette A, Parada-Gutierrez A, Parfenova EI, Park M, Parren M, Parthasarathy N, Peri PL, Pfautsch S, Picard N, Piedade MTF, Piotto D, Pitman NCA, Poulsen AD, Poulsen JR, Pretzsch H, Ramirez Arevalo F, Restrepo-Correa Z, Rodeghiero M, Rolim SG, Roopsind A, Rovero F, Rutishauser E, Saikia P, Salas-Eljatib C, Saner P, Schall P, Schelhaas MJ, Schepaschenko D, Scherer-Lorenzen M, Schmid B, Schöngart J, Searle EB, Seben V, Serra-Diaz JM, Sheil D, Shvidenko AZ, Silva-Espejo JE, Silveira M, Singh J, Sist P, Slik F, Sonké B, Souza AF, Stereńczak KJ, Svenning JC, Svoboda M, Swanepoel B, Targhetta N, Tchebakova N, Ter Steege H, Thomas R, Tikhonova E, Umunay PM, Usoltsev VA, Valencia R, Valladares F, van der Plas F, Van Do T, van Nuland ME, Vasquez RM, Verbeeck H, Viana H, Vibrans AC, Vieira S, von Gadow K, Wang HF, Watson JV, Werner GDA, Wiser SK, Wittmann F, Woell H, Wortel V, Zagt R, Zawiła-Niedźwiecki T, Zhang C, Zhao X, Zhou M, Zhu ZX, Zo-Bi IC, Gann GD, and Crowther TW
- Subjects
- Biodiversity, Human Activities, Environmental Restoration and Remediation trends, Sustainable Development trends, Global Warming prevention & control, Carbon analysis, Carbon metabolism, Carbon Sequestration, Conservation of Natural Resources statistics & numerical data, Conservation of Natural Resources trends, Forests
- Abstract
Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system
1 . Remote-sensing estimates to quantify carbon losses from global forests2-5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced6 and satellite-derived approaches2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151-363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets., (© 2023. The Author(s).)- Published
- 2023
- Full Text
- View/download PDF
50. The global biogeography of tree leaf form and habit.
- Author
-
Ma H, Crowther TW, Mo L, Maynard DS, Renner SS, van den Hoogen J, Zou Y, Liang J, de-Miguel S, Nabuurs GJ, Reich PB, Niinemets Ü, Abegg M, Adou Yao YC, Alberti G, Almeyda Zambrano AM, Alvarado BV, Alvarez-Dávila E, Alvarez-Loayza P, Alves LF, Ammer C, Antón-Fernández C, Araujo-Murakami A, Arroyo L, Avitabile V, Aymard GA, Baker TR, Bałazy R, Banki O, Barroso JG, Bastian ML, Bastin JF, Birigazzi L, Birnbaum P, Bitariho R, Boeckx P, Bongers F, Bouriaud O, Brancalion PHS, Brandl S, Brearley FQ, Brienen R, Broadbent EN, Bruelheide H, Bussotti F, Cazzolla Gatti R, César RG, Cesljar G, Chazdon R, Chen HYH, Chisholm C, Cho H, Cienciala E, Clark C, Clark D, Colletta GD, Coomes DA, Valverde FC, Corral-Rivas JJ, Crim PM, Cumming JR, Dayanandan S, de Gasper AL, Decuyper M, Derroire G, DeVries B, Djordjevic I, Dolezal J, Dourdain A, Engone Obiang NL, Enquist BJ, Eyre TJ, Fandohan AB, Fayle TM, Feldpausch TR, Ferreira LV, Finér L, Fischer M, Fletcher C, Fridman J, Frizzera L, Gamarra JGP, Gianelle D, Glick HB, Harris DJ, Hector A, Hemp A, Hengeveld G, Hérault B, Herbohn JL, Herold M, Hillers A, Honorio Coronado EN, Hui C, Ibanez TT, Amaral I, Imai N, Jagodziński AM, Jaroszewicz B, Johannsen VK, Joly CA, Jucker T, Jung I, Karminov V, Kartawinata K, Kearsley E, Kenfack D, Kennard DK, Kepfer-Rojas S, Keppel G, Khan ML, Killeen TJ, Kim HS, Kitayama K, Köhl M, Korjus H, Kraxner F, Kucher D, Laarmann D, Lang M, Lewis SL, Lu H, Lukina NV, Maitner BS, Malhi Y, Marcon E, Marimon BS, Marimon-Junior BH, Marshall AR, Martin EH, Meave JA, Melo-Cruz O, Mendoza C, Merow C, Monteagudo Mendoza A, Moreno VS, Mukul SA, Mundhenk P, Nava-Miranda MG, Neill D, Neldner VJ, Nevenic RV, Ngugi MR, Niklaus PA, Oleksyn J, Ontikov P, Ortiz-Malavasi E, Pan Y, Paquette A, Parada-Gutierrez A, Parfenova EI, Park M, Parren M, Parthasarathy N, Peri PL, Pfautsch S, Phillips OL, Picard N, Piedade MTF, Piotto D, Pitman NCA, Mendoza-Polo I, Poulsen AD, Poulsen JR, Pretzsch H, Ramirez Arevalo F, Restrepo-Correa Z, Rodeghiero M, Rolim SG, Roopsind A, Rovero F, Rutishauser E, Saikia P, Salas-Eljatib C, Saner P, Schall P, Schelhaas MJ, Schepaschenko D, Scherer-Lorenzen M, Schmid B, Schöngart J, Searle EB, Seben V, Serra-Diaz JM, Sheil D, Shvidenko AZ, Silva-Espejo JE, Silveira M, Singh J, Sist P, Slik F, Sonké B, Souza AF, Miścicki S, Stereńczak KJ, Svenning JC, Svoboda M, Swanepoel B, Targhetta N, Tchebakova N, Ter Steege H, Thomas R, Tikhonova E, Umunay PM, Usoltsev VA, Valencia R, Valladares F, van der Plas F, Van Do T, van Nuland ME, Vasquez RM, Verbeeck H, Viana H, Vibrans AC, Vieira S, von Gadow K, Wang HF, Watson JV, Werner GDA, Westerlund B, Wiser SK, Wittmann F, Woell H, Wortel V, Zagt R, Zawiła-Niedźwiecki T, Zhang C, Zhao X, Zhou M, Zhu ZX, Zo-Bi IC, and Zohner CM
- Subjects
- Humans, Forests, Plant Leaves metabolism, Habits, Carbon metabolism, Trees metabolism, Ecosystem
- Abstract
Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17-34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.