1. Deletion of pancreas-specific miR-216a reduces beta-cell mass and inhibits pancreatic cancer progression in mice
- Author
-
Suheda Erener, Cara E. Ellis, Adam Ramzy, Maria M. Glavas, Shannon O’Dwyer, Sandra Pereira, Tom Wang, Janice Pang, Jennifer E. Bruin, Michael J. Riedel, Robert K. Baker, Travis D. Webber, Marina Lesina, Matthias Blüher, Hana Algül, Janel L. Kopp, Stephan Herzig, and Timothy J. Kieffer
- Subjects
miR-216a ,β-cell mass ,diabetes ,pancreatic cancer ,PDAC ,biomarker ,Medicine (General) ,R5-920 - Abstract
Summary: miRNAs have crucial functions in many biological processes and are candidate biomarkers of disease. Here, we show that miR-216a is a conserved, pancreas-specific miRNA with important roles in pancreatic islet and acinar cells. Deletion of miR-216a in mice leads to a reduction in islet size, β-cell mass, and insulin levels. Single-cell RNA sequencing reveals a subpopulation of β-cells with upregulated acinar cell markers under a high-fat diet. miR-216a is induced by TGF-β signaling, and inhibition of miR-216a increases apoptosis and decreases cell proliferation in pancreatic cells. Deletion of miR-216a in the pancreatic cancer-prone mouse line KrasG12D;Ptf1aCreER reduces the propensity of pancreatic cancer precursor lesions. Notably, circulating miR-216a levels are elevated in both mice and humans with pancreatic cancer. Collectively, our study gives insights into how β-cell mass and acinar cell growth are modulated by a pancreas-specific miRNA and also suggests miR-216a as a potential biomarker for diagnosis of pancreatic diseases.
- Published
- 2021
- Full Text
- View/download PDF