1. Variational Shape Reconstruction via Quadric Error Metrics
- Author
-
Zhao, Tong, Busé, Laurent, Cohen-Steiner, David, Boubekeur, Tamy, Thiery, Jean-Marc, Alliez, Pierre, Geometric Modeling of 3D Environments (TITANE), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), AlgebRe, geOmetrie, Modelisation et AlgoriTHmes (AROMATH), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-National and Kapodistrian University of Athens (NKUA), Understanding the Shape of Data (DATASHAPE), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria), Adobe Research, and ANR-19-P3IA-0002,3IA@cote d'azur,3IA Côte d'Azur(2019)
- Subjects
quadric error metrics ,Surface reconstruction ,concise mesh reconstruction ,[INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG] ,3D point cloud ,clustering - Abstract
International audience; Inspired by the strengths of quadric error metrics initially designed for mesh decimation, we propose a concise mesh reconstruction approach for 3D point clouds. Our approach proceeds by clustering the input points enriched with quadric error metrics, where the generator of each cluster is the optimal 3D point for the sum of its quadric error metrics. This approach favors the placement of generators on sharp features, and tends to equidistribute the error among clusters. We reconstruct the output surface mesh from the adjacency between clusters and a constrained binary solver. We combine our clustering process with an adaptive refinement driven by the error. Compared to prior art, our method avoids dense reconstruction prior to simplification and produces immediately an optimized mesh.
- Published
- 2023
- Full Text
- View/download PDF