Kanawat Paoin, Kayo Ueda, Thammasin Ingviya, Suhaimee Buya, Arthit Phosri, Xerxes Tesoro Seposo, Sam-ang Seubsman, Matthew Kelly, Adrian Sleigh, Akiko Honda, Hirohisa Takano, Jaruwan Chokhanapitak, Chaiyun Churewong, Suttanit Hounthasarn, Suwanee Khamman, Daoruang Pandee, Suttinan Pangsap, Tippawan Prapamontol, Janya Puengson, Wimalin Rimpeekool, Yodyiam Sangrattanakul, Boonchai Somboonsook, Nintita Sripaiboonkij, Pathumvadee Somsamai, Benjawan Tawatsupa, Arunrat Tangmunkongvorakul, Duangkae Vilainerun, Wanee Wimonwattanaphan, Chris Bain, Emily Banks, Cathy Banwell, Janneke Berecki-Gisolf, Bruce Caldwell, Gordon Carmichael, Tarie Dellora, Jane Dixon, Sharon Friel, David Harley, Susan Jordan, Tord Kjellstrom, Lynette Lim, Roderick McClure, Anthony McMichael, Tanya Mark, Lyndall Strazdins, Tam Tran, Vasoontara Yiengprugsawan, and Jiaying Zhao
Background Several studies have shown the health effects of air pollutants, especially in China, North American and Western European countries. But longitudinal cohort studies focused on health effects of long-term air pollution exposure are still limited in Southeast Asian countries where sources of air pollution, weather conditions, and demographic characteristics are different. The present study examined the association between long-term exposure to air pollution and self-reported morbidities in participants of the Thai cohort study (TCS) in Bangkok metropolitan region (BMR), Thailand. Methods This longitudinal cohort study was conducted for 9 years from 2005 to 2013. Self-reported morbidities in this study included high blood pressure, high blood cholesterol, and diabetes. Air pollution data were obtained from the Thai government Pollution Control Department (PCD). Particles with diameters ≤10 μm (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3), and carbon monoxide (CO) exposures were estimated with ordinary kriging method using 22 background and 7 traffic monitoring stations in BMR during 2005–2013. Long-term exposure periods to air pollution for each subject was averaged as the same period of person-time. Cox proportional hazards models were used to examine the association between long-term air pollution exposure with self-reported high blood pressure, high blood cholesterol, diabetes. Results of self-reported morbidity were presented as hazard ratios (HRs) per interquartile range (IQR) increase in PM10, O3, NO2, SO2, and CO. Results After controlling for potential confounders, we found that an IQR increase in PM10 was significantly associated with self-reported high blood pressure (HR = 1.13, 95% CI: 1.04, 1.23) and high blood cholesterol (HR = 1.07, 95%CI: 1.02, 1.12), but not with diabetes (HR = 1.05, 95%CI: 0.91, 1.21). SO2 was also positively associated with self-reported high blood pressure (HR = 1.22, 95%CI: 1.08, 1.38), high blood cholesterol (HR = 1.20, 95%CI: 1.11, 1.30), and diabetes (HR = 1.21, 95%CI: 0.92, 1.60). Moreover, we observed a positive association between CO and self-reported high blood pressure (HR = 1.07, 95%CI: 1.00, 1.15), but not for other diseases. However, self-reported morbidities were not associated with O3 and NO2. Conclusions Long-term exposure to air pollution, especially for PM10 and SO2 was associated with self-reported high blood pressure, high blood cholesterol, and diabetes in subjects of TCS. Our study supports that exposure to air pollution increases cardiovascular disease risk factors for younger population., Highlights • Evidence on health effects of long-term air pollution exposure are still limited in Southeast Asia. • SO2 was associated with an increased risks of self-reported high blood pressure, high blood cholesterol, and diabetes. • Increase of PM10 was also associated with the incidences of high blood pressure and high blood cholesterol. • The effects were observed even at the level below the National Standard Limit. • This study suggests air pollution increases cardiovascular disease risk factors for younger population.