1. Rheological and Aging Properties of Nano-Clay/SBS Composite-Modified Asphalt.
- Author
-
Lu, Yeqing, Li, Siwei, Jiang, Yixin, Yang, Xiaolong, and Li, Linxianzi
- Subjects
- *
ASPHALT pavements , *ATOMIC force microscopes , *RHEOLOGY , *STRAINS & stresses (Mechanics) , *MANUFACTURING processes , *ASPHALT - Abstract
Nano-organic montmorillonite (OMMT) not only inhibits the harmful asphalt fume generation during the production and construction processes of asphalt mixtures but also effectively improves the performance of asphalt pavements. In order to prepare asphalt materials with smoke suppression effects and good road performance, this study selects nano-OMMT and SBS-modified asphalt for composite modification of asphalt mixtures and systematically investigates its road performance. Through the temperature sweep test, the frequency sweep test, the multiple stress creep recovery (MSCR) test, the bending beam rheometer (BBR) test, and the atomic force microscope (AFM) test, the high-temperature rheological properties, low-temperature rheological properties, high-temperature properties and aging resistance of the modified asphalt are studied. The research findings indicate that OMMT can effectively reduce the sensitivity of modified asphalt to load stress and improve its high-temperature rheological properties. SBS-modified asphalt shows increased creep stiffness and a decreased creep rate after OMMT modification, resulting in reduced flexibility and decreased low-temperature crack resistance. After short-term and long-term aging, the complex modulus aging index of OMMT/SBS composite-modified asphalt is lower than that of SBS-modified asphalt, and the phase angle aging index is higher than that of SBS-modified asphalt, demonstrating that OMMT enhances the aging resistance of SBS-modified asphalt. OMMT inhibits oxidation reactions in the asphalt matrix, reducing the formation of C=O and S=O bonds, thereby slowing down the aging process of modified asphalt and improving its aging resistance. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF