1. MicroRNA-34a-5p regulates agouti-related peptide via krüppel-like factor 4 and is disrupted by bisphenol A in hypothalamic neurons.
- Author
-
Yu M, He W, and Belsham DD
- Subjects
- Animals, Mice, Humans, Gene Expression Regulation drug effects, Obesity metabolism, Obesity genetics, Cell Line, Neuropeptide Y metabolism, Neuropeptide Y genetics, Benzhydryl Compounds toxicity, MicroRNAs genetics, MicroRNAs metabolism, Agouti-Related Protein metabolism, Agouti-Related Protein genetics, Phenols pharmacology, Kruppel-Like Transcription Factors genetics, Kruppel-Like Transcription Factors metabolism, Hypothalamus metabolism, Hypothalamus drug effects, Neurons metabolism, Neurons drug effects, Kruppel-Like Factor 4
- Abstract
Obesity is a complex disease marked by increased adiposity and impaired metabolic function. While diet and lifestyle are primary causes, endocrine-disrupting chemicals (EDCs), such as bisphenol A (BPA), significantly contribute to obesity. BPA, found in plastic consumer products, accumulates in the hypothalamus and dysregulates energy homeostasis by disrupting the neuropeptide Y (NPY)/agouti-related peptide (AgRP) and pro-opiomelanocortin (POMC) neurons. However, the precise molecular mechanisms of how BPA disrupts neuropeptide expression remains unclear. We hypothesized that microRNAs (miRNAs), which regulate approximately 60% of the human protein-coding genome and are crucial for hypothalamic energy regulation, may mediate the effects of BPA on Agrp. Using the TargetScanMouse 8.0 and DIANA microT bioinformatics tools, we identified miR-501-5p as a potential miRNA that directly regulates Agrp and the miR-34 family as miRNAs that indirectly regulate Agrp through its transcription factor krüppel-like factor 4 (KLF4). We found that in an immortalized NPY/AgRP-expressing cell line, mHypoE-41, miR-501-5p unexpectedly upregulated Agrp, while miR-34a-5p reduced Klf4 and Agrp mRNA levels. Serum starvation reduced miR-34a-5p levels and elevated Agrp mRNA levels, suggesting a potential role in AgRP regulation. Inhibiting the miR-34a-5p interaction with the Klf4 3'UTR using a specific target site blocker prevented the downregulation of both Klf4 and Agrp, suggesting miR-34a-5p alters Agrp mRNA levels via regulation of KLF4. BPA treatment increased Agrp and Klf4 expression while simultaneously decreasing miR-34a-5p levels, indicating miR-34a-5p may play a role in BPA-mediated dysregulation of Agrp. Overall, this study highlights indirect miRNA-based regulation of Agrp, which can also be dysregulated by obesogens, such as BPA., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.)
- Published
- 2025
- Full Text
- View/download PDF