1. Free-breathing motion compensated 4D (3D+respiration) T2-weighted turbo spin-echo MRI for body imaging
- Author
-
Bruijnen, T., Schake, T., Akdag, O., Bruel, C. V. M., Lagendijk, J. J. W., Berg, C. A. T. van den, and Tijssen, R. H. N.
- Subjects
Physics - Medical Physics ,Electrical Engineering and Systems Science - Image and Video Processing - Abstract
Purpose: To develop and evaluate a free-breathing respiratory motion compensated 4D (3D+respiration) $T_2$-weighted turbo spin echo sequence with application to radiology and MR-guided radiotherapy. Methods: k-space data are continuously acquired using a rewound Cartesian acquisition with spiral profile ordering (rCASPR) to provide matching contrast to the conventional linear phase encode ordering and to sort data into multiple respiratory phases. Low-resolution respiratory-correlated 4D images were reconstructed with compressed sensing and used to estimate non-rigid deformation vector fields, which were subsequently used for a motion compensated image reconstruction. rCASPR sampling was compared to linear and CASPR sampling in terms of point-spread-function (PSF) and image contrast with in silico, phantom and in vivo experiments. Reconstruction parameters for low-resolution 4D-MRI (spatial resolution and temporal regularization) were determined using a grid search. The proposed motion compensated rCASPR was evaluated in eight healthy volunteers and compared to free-breathing scans with linear sampling. Image quality was compared based on visual inspection and quantitatively by means of the gradient entropy. Results: rCASPR provided a superior PSF (similar in ky and narrower in kz) and showed no considerable differences in images contrast compared to linear sampling. The optimal 4D-MRI reconstruction parameters were spatial resolution=$4.5 mm^3$ and $\lambda_t=10^{-4}$. The groupwise average gradient entropy was 22.31 for linear, 22.20 for rCASPR, 22.14 for soft-gated rCASPR and 22.02 for motion compensated rCASPR. Conclusion: The proposed motion compensated rCASPR enables high quality free-breathing T2-TSE with minimal changes in image contrast and scan time. The proposed method therefore enables direct transfer of clinically used 3D TSE sequences to free-breathing., Comment: 19 pages, 11 figures
- Published
- 2022