1. Why Topological Data Analysis Detects Financial Bubbles?
- Author
-
Akingbade, Samuel W., Gidea, Marian, Manzi, Matteo, and Nateghi, Vahid
- Subjects
Quantitative Finance - Statistical Finance ,Mathematics - Dynamical Systems ,Physics - Physics and Society - Abstract
We present a heuristic argument for the propensity of Topological Data Analysis (TDA) to detect early warning signals of critical transitions in financial time series. Our argument is based on the Log-Periodic Power Law Singularity (LPPLS) model, which characterizes financial bubbles as super-exponential growth (or decay) of an asset price superimposed with oscillations increasing in frequency and decreasing in amplitude when approaching a critical transition (tipping point). We show that whenever the LPPLS model is fitting with the data, TDA generates early warning signals. As an application, we illustrate this approach on a sample of positive and negative bubbles in the Bitcoin historical price.
- Published
- 2023