196 results on '"Alexandre Bouhelier"'
Search Results
2. Electromigrated electrical optical antennas for transducing electrons and photons at the nanoscale
- Author
-
Arindam Dasgupta, Mickaël Buret, Nicolas Cazier, Marie-Maxime Mennemanteuil, Reinaldo Chacon, Kamal Hammani, Jean-Claude Weeber, Juan Arocas, Laurent Markey, Gérard Colas des Francs, Alexander Uskov, Igor Smetanin, and Alexandre Bouhelier
- Subjects
electromigration ,Fowler–Nordheim ,hot-electron emission ,inelastic electron tunneling ,optical antennas ,transition voltage ,tunnel junction ,Technology ,Chemical technology ,TP1-1185 ,Science ,Physics ,QC1-999 - Abstract
Background: Electrically controlled optical metal antennas are an emerging class of nanodevices enabling a bilateral transduction between electrons and photons. At the heart of the device is a tunnel junction that may either emit light upon injection of electrons or generate an electrical current when excited by a light wave. The current study explores a technological route for producing these functional units based upon the electromigration of metal constrictions.Results: We combine multiple nanofabrication steps to realize in-plane tunneling junctions made of two gold electrodes, separated by a sub-nanometer gap acting as the feedgap of an optical antenna. We electrically characterize the transport properties of the junctions in the light of the Fowler–Nordheim representation and the Simmons model for electron tunneling. We demonstrate light emission from the feedgap upon electron injection and show examples of how this nanoscale light source can be coupled to waveguiding structures.Conclusion: Electromigrated in-plane tunneling optical antennas feature interesting properties with their unique functionality enabling interfacing electrons and photons at the atomic scale and with the same device. This technology may open new routes for device-to-device communication and for interconnecting an electronic control layer to a photonic architecture.
- Published
- 2018
- Full Text
- View/download PDF
3. Optical wireless link between a nanoscale antenna and a transducing rectenna
- Author
-
Arindam Dasgupta, Marie-Maxime Mennemanteuil, Mickaël Buret, Nicolas Cazier, Gérard Colas-des-Francs, and Alexandre Bouhelier
- Subjects
Science - Abstract
Integrating optical and electrical components for communication systems is challenging due to the differences of scale. The authors have developed an on-chip light-to-electrical wireless link between a nanoantenna and an optical rectifier, envisioned as a solution for future integrated wireless interconnects.
- Published
- 2018
- Full Text
- View/download PDF
4. Optical Antennas
- Author
-
Nicolas Bonod, Alexandre Bouhelier, A. Femius Koenderink, and Ali Passian
- Subjects
Optics. Light ,QC350-467 - Published
- 2012
- Full Text
- View/download PDF
5. Inline Photothermal Surface Plasmon Detector Integrated in Titanium Dioxide Waveguides
- Author
-
Andres Martinez, Vittorio Grimaldi, Christian De Vita, Deepak Kumar Sharma, Isabelle Gallet, Aurore Andrieux, Juan Arocas, Kamal Hammani, Laurent Markey, Jean-Claude Weeber, Alexandre Bouhelier, Marco Sampietro, Andrea Melloni, and Francesco Morichetti
- Subjects
Electrical and Electronic Engineering ,Condensed Matter Physics ,Atomic and Molecular Physics, and Optics - Published
- 2023
- Full Text
- View/download PDF
6. Optical rectification and thermal currents in optical tunneling gap antennas
- Author
-
Marie Maxime Mennemanteuil, Mickaël Buret, Gérard Colas-des-Francs, and Alexandre Bouhelier
- Subjects
Condensed Matter - Mesoscale and Nanoscale Physics ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,FOS: Physical sciences ,Physics - Applied Physics ,Applied Physics (physics.app-ph) ,Electrical and Electronic Engineering ,Atomic and Molecular Physics, and Optics ,Physics - Optics ,Optics (physics.optics) ,Electronic, Optical and Magnetic Materials ,Biotechnology - Abstract
Electrically-contacted optical gap antennas are nanoscale interface devices enabling the transduction between photons and electrons. This new generation of devices captures visible to near infrared electromagnetic radiation and converts the incident energy in a direct-current (DC) electrical signal. The nanoscale rectenna is usually constituted of metal elements (e.g. gold). Light absorption by the metal contacts may lead to additional thermal effects which need to be taken into account to understand the complete photo- response of the device. The purpose of this communication is to discuss the contribution of laser-induced thermo-electric effects in the photo-assisted electronic transport., Comment: 9 figures
- Published
- 2022
- Full Text
- View/download PDF
7. Coherent two-beam steering of delocalized nonlinear photoluminescence in a plasmon cavity
- Author
-
Florian Dell’Ova, Diana Shakirova, Yoann Brulé, Laureen Moreaud, Gérard Colas-des-Francs, Erik Dujardin, Alexandre Bouhelier, Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), Université de Technologie de Belfort-Montbeliard (UTBM)-Université de Bourgogne (UB)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS), ITMO University [Russia], Groupe NanoSciences (CEMES-GNS), Centre d'élaboration de matériaux et d'études structurales (CEMES), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), ANR-15-IDEX-0003,BFC,ISITE ' BFC(2015), ANR-20-CE24-0001,DALHAI,Conception par intelligence artificielle hybride d'ALU plasmonique(2020), ANR-17-EURE-0002,EIPHI,Ingénierie et Innovation par les sciences physiques, les savoir-faire technologiques et l'interdisciplinarité(2017), and European Project: PO FEDER-FSE Bourgogne 2014/2020
- Subjects
[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,Atomic and Molecular Physics, and Optics - Abstract
International audience; We aim at controlling the spatial distribution of nonlinear photoluminescence in a shaped micrometer-size crystalline gold flake. Interestingly, the underlying surface plasmon modal landscape sustained by this mesoscopic structure can be advantageously used to generate nonlinear photoluminescence (nPL) in remote locations away from the excitation spot. By controlling the modal pattern, we show that the delocalized nonlinear photoluminescence intensity can be redistributed spatially. This is first accomplished by changing the polarization orientation of the pulsed laser excitation in order to select a subset of available surface plasmon modes within a continuum. We then propose a second approach to redistribute the nPL within the structure by implementing a phase control of the plasmon interference pattern arising from a coherent two-beam excitation. Control and engineering of the nonlinear photoluminescence spatial extension is a prerequisite for deploying the next generation of plasmonic-enabled integrated devices relying on hot carriers.
- Published
- 2022
- Full Text
- View/download PDF
8. Hot Carriers-Induced Nonlinear Photoluminescence in Thin Indium Tin Oxide Layer Patterned by Ga Ion Beam Milling
- Author
-
Florian Dell’Ova, Konstantin Malchow, Rémi Chassagnon, Olivier Heintz, Nicolas Pocholle, Gérard Colas des Francs, Erik Dujardin, Alexandre Bouhelier, Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), Université de Technologie de Belfort-Montbeliard (UTBM)-Université de Bourgogne (UB)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS), Groupe NanoSciences (CEMES-GNS), Centre d'élaboration de matériaux et d'études structurales (CEMES), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), ANR-20-CE24-0001,DALHAI,Conception par intelligence artificielle hybride d'ALU plasmonique(2020), ANR-15-IDEX-0003,BFC,ISITE ' BFC(2015), ANR-21-ESRE-0040,SMARTLIGHT,SMARTLIGHT(2021), ANR-17-EURE-0002,EIPHI,Ingénierie et Innovation par les sciences physiques, les savoir-faire technologiques et l'interdisciplinarité(2017), and European Project: PO FEDER-FSE Bourgogne 2014/2020
- Subjects
Focused Ion Beam ,[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,Irradiation Dose ,Patterned Film ,Nonlinear Photoluminescence ,Hot Electrons ,Indium Tin Oxide ,Femtosecond Pulses ,Thermal Coefficient - Abstract
26 p.; International audience; This paper explores the nonlinear photoluminescence emitted by Indium Tin Oxide (ITO) thin layers patterned by focused gallium ion beam milling. Using tightly focused near-infrared femtosecond pulsed laser excitation, a broad up-converted luminescence spanning the visible spectrum is detected. The intensity of the luminescence follows a non-monotonous relationship with milling doses and can be related to the modification of the ITO electronic band structure by the implantation of Ga ions. The shape and the power dependence of the spectrum share strong similarities with nonlinear photoluminescence arising from metals. The results are consistent with a nonlinear luminescence process originating from the radiative decay of photo-generated hot carriers. The ther-1 mal coefficient relating the hot carrier temperature to the laser intensity is determined as a function of milling dose.
- Published
- 2022
- Full Text
- View/download PDF
9. Conformational Changes and Charge Transfer in Biomolecules Resolved Using Dynamic Enhanced Raman Correlation Spectroscopy
- Author
-
Alexandre Bouhelier, Eric Finot, Aymeric Leray, Jean-Emmanuel Clément, Laboratoire Interdisciplinaire Carnot de Bourgogne [Dijon] (LICB), and Université de Bourgogne (UB)-Université de Technologie de Belfort-Montbeliard (UTBM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Static Electricity ,Molecular Conformation ,Metal Nanoparticles ,02 engineering and technology ,Péclet number ,Spectrum Analysis, Raman ,010402 general chemistry ,01 natural sciences ,symbols.namesake ,Adsorption ,Materials Chemistry ,Molecule ,Physical and Theoretical Chemistry ,Diffusion (business) ,chemistry.chemical_classification ,Quantitative Biology::Biomolecules ,Biomolecule ,Tryptophan ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Surfaces, Coatings and Films ,chemistry ,Chemical physics ,symbols ,[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph] ,Gold ,0210 nano-technology ,Raman spectroscopy ,Two-dimensional nuclear magnetic resonance spectroscopy - Abstract
International audience; In this contribution, we report that conforma-tional changes of molecules that are often buried in a wide-distributed Gaussian distribution can be discerned by analyzing the dynamics of specific Raman lines. We investigate the pertinence of the auto-and cross-correlation functions applied to the dynamics of three Raman lines of an amino acid, the tryptophan. The cross-correlation between intensity and the Raman band is an indicator of the charge transfer during the diffusion limited reaction of tryptophan and the gold surface. The Pećlet number Pe can provide a valuable indicator of the convective and/or diffusive features of each Raman band. Adsorption induced conformation changes can be identified using the autocorrelation of the multiples states within the Raman band centered at 1550 cm −1 .
- Published
- 2019
- Full Text
- View/download PDF
10. Interconnect-Free Multibit Arithmetic and Logic Unit in a Single Reconfigurable 3 μm
- Author
-
Upkar, Kumar, Aurélien, Cuche, Christian, Girard, Sviatlana, Viarbitskaya, Florian, Dell'Ova, Raminfar, Al Rafrafin, Gérard, Colas des Francs, Sreenath, Bolisetty, Raffaele, Mezzenga, Alexandre, Bouhelier, and Erik, Dujardin
- Abstract
Processing information with conventional integrated circuits remains beset by the interconnect bottleneck: circuits made of smaller active devices need longer and narrower interconnects, which have become the prime source of power dissipation and clock rate saturation. Optical interchip communication provides a fast and energy-saving option that still misses a generic on-chip optical information processing by interconnect-free and reconfigurable Boolean arithmetic logic units (ALU). Considering metal plasmons as a platform with dual optical and electronic compatibilities, we forge interconnect-free, ultracompact plasmonic Boolean logic gates and reconfigure them, at will, into computing ALU without any redesign nor cascaded circuitry. We tailor the plasmon mode landscape of a single 2.6 μm
- Published
- 2021
11. Hot Electrons Remote Excitation and their Ultrafast Dynamics
- Author
-
Lamberto Duò, Renato Juliano-Martins, Benoit Cluzel, Marlène Petit, Monica Bollani, Alexandre Bouhelier, Romain Hernandez, Michele Celebrano, Olivier Demichel, Mario Lodari, Paolo Biagioni, Giovanni Isella, Adrian Agreda, Marco Finazzi, and Jean-Claude Weeber
- Subjects
Materials science ,business.industry ,Excited state ,Optoelectronics ,Photodetection ,business ,Ultrashort pulse ,Hot electron ,Nanoscopic scale ,Plasmon ,Excitation - Abstract
Hot electron-based devices are quite promissing for ultrafast photodetection and to set off enhanced physicochemical reactions [1] . Controlling their generation at the nanoscale within plasmonic devices is a key for the future development of hybrid hot-electrons technologies. Indeed, Surface Plasmon-Polaritons (SPPs) can be exploited to confine light and enhance the number of excited hot carriers [2] . We aim at studying the excitation and dynamics of hot electrons, enhanced by plasmonics, with two different approaches.
- Published
- 2021
- Full Text
- View/download PDF
12. Measuring the magnetic dipole transition of single nanorods by spectroscopy and Fourier microscopy
- Author
-
G. Colas des Francs, Jeongmo Kim, Jongwook Kim, Alexandre Bouhelier, Thierry Gacoin, Khalid Lahlil, S. Mathew, Reinaldo Chacon, Aymeric Leray, Laboratoire Interdisciplinaire Carnot de Bourgogne [Dijon] (LICB), Université de Bourgogne (UB)-Université de Technologie de Belfort-Montbeliard (UTBM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de physique de la matière condensée (LPMC), and École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Condensed Matter - Mesoscale and Nanoscale Physics ,Magnetic dipole transition ,Nanophotonics ,General Physics and Astronomy ,Physics::Optics ,FOS: Physical sciences ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Molecular physics ,Dipole ,Crystal field theory ,0103 physical sciences ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Nanorod ,Emission spectrum ,010306 general physics ,0210 nano-technology ,Spectroscopy ,Magnetic dipole - Abstract
International audience; Rare-earth doped nanocrystals possess optical transitions with significant either electric or magnetic dipole characters. They are of considerable interest for understanding and engineering light-matter interactions at the nanoscale with numerous applications in nanophotonics. Here, we study the 5 D 0 → 7 F 1 transition dipole vector in individual NaYF 4 : Eu 3+ nanorod crystals by Fourier and confocal micro-scopies. A single-crystal host matrix leads to narrow emission lines at room temperature that permit separation of the Stark sublevels resulting from the crystal-field splitting. We observe a fully magnetic transition and low variability of the transition dipole orientation over several single nanorods. We estimate the proportion of the dipole transitions for the Stark sublevels. We also determine an effective altitude of the rod with respect to the substrate. The narrow emission lines characteristic of NaYF 4 : Eu 3+ ensure well-defined electric or magnetic transitions, and are thus instrumental for probing locally their electromagnetic environment by standard confocal microscopy.
- Published
- 2021
- Full Text
- View/download PDF
13. Interconnect-Free Multibit Arithmetic and Logic Unit in a Single Reconfigurable 3 μm2 Plasmonic Cavity
- Author
-
Erik Dujardin, Raminfar Al Rafrafin, Florian Dell'Ova, Raffaele Mezzenga, Sreenath Bolisetty, Gérard Colas des Francs, Alexandre Bouhelier, Aurélien Cuche, Christian Girard, Upkar Kumar, Sviatlana Viarbitskaya, Groupe NanoSciences (CEMES-GNS), Centre d'élaboration de matériaux et d'études structurales (CEMES), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie de Toulouse (ICT-FR 2599), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Laboratoire Interdisciplinaire Carnot de Bourgogne [Dijon] (LICB), Université de Bourgogne (UB)-Université de Technologie de Belfort-Montbeliard (UTBM)-Centre National de la Recherche Scientifique (CNRS), Department of Health Sciences and Technology [ETH Zürich] (D-HEST), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), This work has been funded by the French Agence Nationale de la Recherche (ANR-13-BS10-0007-PLACORE), the European Research Council (ERC-2007-StG-203872-COMOSYEL), the Region of Burgundy (PARI II Photcom), the EIPHI graduate school (ANR-17-EUR-0002), the Conseil Régional de Bourgogne-Franche-Comté (APEX), and the European Regional Developement Fund (Project Optiflex). The authors acknowledge the support of the massively parallel computing center CALMIP (Toulouse, Fr) through Project No. P1107., ANR-13-BS10-0007,PlaCoRe,Circuits Plasmoniques Colloidaux Reconfigurables(2013), ANR-17-EURE-0002,EIPHI,Ingénierie et Innovation par les sciences physiques, les savoir-faire technologiques et l'interdisciplinarité(2017), European Project, Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), and Université de Technologie de Belfort-Montbeliard (UTBM)-Université de Bourgogne (UB)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Adder ,Computer science ,Clock rate ,General Physics and Astronomy ,02 engineering and technology ,Integrated circuit ,plasmonics ,law.invention ,03 medical and health sciences ,law ,General Materials Science ,Arithmetic ,Hardware_ARITHMETICANDLOGICSTRUCTURES ,030304 developmental biology ,Electronic circuit ,0303 health sciences ,Interconnection ,[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,reconfigurable device ,General Engineering ,Control reconfiguration ,Interconnect bottleneck ,nonlinear photoluminescence ,021001 nanoscience & nanotechnology ,cavity modes ,Logic gate ,logic gates ,half-adder ,0210 nano-technology ,Hardware_LOGICDESIGN - Abstract
International audience; Processing information with conventional integrated circuits remains beset by the interconnect bottleneck: circuits made of smaller active devices need longer and narrower interconnects, which have become the prime source of power dissipation and clock rate saturation. Optical interchip communication provides a fast and energy-saving option that still misses a generic on-chip optical information processing by interconnect-free and reconfigurable Boolean arithmetic logic units (ALU). Considering metal plasmons as a platform with dual optical and electronic compatibilities, we forge interconnect-free, ultracompact plasmonic Boolean logic gates and reconfigure them, at will, into computing ALU without any redesign nor cascaded circuitry. We tailor the plasmon mode landscape of a single 2.6 μm2 planar gold cavity and demonstrate the operation and facile reconfiguration of all 2-input logic gates. The potential for higher complexity of the same logic unit is shown by a multi-input excitation and a phase control to realize an arithmetic 2-bit adder.
- Published
- 2021
- Full Text
- View/download PDF
14. Wave-vector analysis of plasmon-assisted distributed nonlinear photoluminescence along Au nanowires
- Author
-
G. V. Pavan Kumar, Julien Barthes, Alexandre Bouhelier, Adrian Agreda, Deepak Sharma, Gérard Colas des Francs, Laboratoire Interdisciplinaire Carnot de Bourgogne [Dijon] (LICB), Université de Bourgogne (UB)-Université de Technologie de Belfort-Montbeliard (UTBM)-Centre National de la Recherche Scientifique (CNRS), and Indian Institute of Science Education and Research Pune (IISER Pune)
- Subjects
Materials science ,Microscope ,Photoluminescence ,Nanowire ,FOS: Physical sciences ,Physics::Optics ,02 engineering and technology ,01 natural sciences ,Molecular physics ,law.invention ,Condensed Matter::Materials Science ,law ,0103 physical sciences ,Wave vector ,[NLIN]Nonlinear Sciences [physics] ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,010306 general physics ,Plasmon ,Scattering ,021001 nanoscience & nanotechnology ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,Surface plasmon polariton ,3. Good health ,Transverse plane ,0210 nano-technology ,Optics (physics.optics) ,Physics - Optics - Abstract
We report a quantitative analysis of the wavevector diagram emitted by nonlinear photoluminescence generated by a tightly focused pulsed laser beam and distributed along Au nanowire via the mediation of surface plasmon polaritions. The nonlinear photoluminescence is locally excited at key locations along the nanowire in order to understand the different contributions constituting the emission pattern measured in a conjugate Fourier plane of the microscope. Polarization-resolved measurements reveal that the nanowire preferentially emits nonlinear photoluminescence polarized transverse to the long axis at close to the detection limit wavevectors with a small azimuthal spread in comparison to the signal polarized along the long axis. We utilize finite element method to simulate the observed directional scattering by using localized incoherent sources placed on the nanowire. Simulation results faithfully mimic the directional emission of the nonlinear signal emitted by the different portions of the nanowire., 8 pages, 8 figures
- Published
- 2020
- Full Text
- View/download PDF
15. Electrostatic Control over Optically Pumped Hot Electrons in Optical Gap Antennas
- Author
-
Alexander V. Uskov, Igor V. Smetanin, Adrian Agreda, Alexandre Bouhelier, Sviatlana Viarbitskaya, Gérard Colas des Francs, Laboratoire Interdisciplinaire Carnot de Bourgogne [Dijon] (LICB), Université de Bourgogne (UB)-Université de Technologie de Belfort-Montbeliard (UTBM)-Centre National de la Recherche Scientifique (CNRS), P. N. Lebedev Physical Institute of the Russian Academy of Sciences [Moscow] (LPI RAS), and Russian Academy of Sciences [Moscow] (RAS)
- Subjects
Materials science ,Metrics & More Article Recommendations nonlinear photoluminescence ,surface charge density ,02 engineering and technology ,01 natural sciences ,nonlinear plasmonics ,Electric field ,0103 physical sciences ,optical gap antennas ,[NLIN]Nonlinear Sciences [physics] ,Electrical and Electronic Engineering ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,010306 general physics ,Nanoscopic scale ,business.industry ,Charge density ,021001 nanoscience & nanotechnology ,Atomic and Molecular Physics, and Optics ,Electronic, Optical and Magnetic Materials ,Nonlinear system ,Optoelectronics ,Antenna (radio) ,0210 nano-technology ,business ,Hot electron ,Excitation ,hot electrons ,Biotechnology - Abstract
International audience; We investigate the influence of a static electric field on the incoherent nonlinear response of an unloaded electrically contacted nanoscale optical gap antenna. Upon excitation by a tightly focused near-infrared femtosecond laser beam, a transient elevated temperature of the electronic distribution results in a broadband emission of nonlinear photoluminescence (N-PL). We demonstrate a modulation of the yield at which driving photons are frequency up-converted by means of an external control of the electronic surface charge density. We show that the electron temperature and consequently the N-PL intensity can be enhanced or reduced depending on the command polarity and the strength of the control static field. A modulation depth larger than 100% is observed for activation voltages of a few volts.
- Published
- 2020
- Full Text
- View/download PDF
16. Quelle est la couleur de l’or ?
- Author
-
Alexandre Bouhelier, Laboratoire Interdisciplinaire Carnot de Bourgogne [Dijon] (LICB), and Université de Bourgogne (UB)-Université de Technologie de Belfort-Montbeliard (UTBM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] - Abstract
International audience; A priori, la question peut surprendre ; son reflet doré est si caractéristique. Pourtant, ce métal précieux peut diffuser une réponse chromatique variée si on l’observe sous une forme nano-structurée. Mieux, si on l’éclaire avec une impulsion lumineuse ultra-brève, l’or génère une variété de phénomènes non-linéaires qui enrichissent spectralement la palette de longueurs d’onde émise par le métal.
- Published
- 2020
- Full Text
- View/download PDF
17. Coherent Excitation of Optical Oscillations in a Metal Nanosphere by a 2D Electric Current
- Author
-
Alexandre Bouhelier, Alexander V. Uskov, and I. V. Smetanin
- Subjects
Physics ,Drift velocity ,Condensed matter physics ,Physics::Optics ,02 engineering and technology ,021001 nanoscience & nanotechnology ,Plasma oscillation ,01 natural sciences ,Surface plasmon polariton ,Instability ,Atomic and Molecular Physics, and Optics ,symbols.namesake ,Maxwell's equations ,0103 physical sciences ,Dissipative system ,symbols ,010306 general physics ,0210 nano-technology ,Engineering (miscellaneous) ,Plasmon ,Excitation - Abstract
We propose a new concept of localized surface plasmon polariton (SPP) mode excitation in a spherical nanoparticle, which utilizes a collective mechanism of dissipative instability in an adjacent 2D plasma carrying a DC electric current. We show that 2D DC current becomes unstable at optical frequencies when the drift velocity exceeds the speed of sound in the 2D plasma. Dissipative instability emerges as a result of self-consistent 2D plasma oscillations coupled to the electromagnetic modes of the nanosphere, the material of which is absorbing at given frequency (i.e., the dielectric permittivity Ime > 0), and instability is absent in the case of transparent material. We derive the dispersion equation for this dissipative instability by a self-consistent solution of the Maxwell equations for the electromagnetic modes and the hydrodynamic equations for the 2D plasma current. Our estimates demonstrate attainment of very high instability increments Imω ~ 1015 s−1, which makes the proposed concept very promising for excitation of plasmonic nanoantennas.
- Published
- 2018
- Full Text
- View/download PDF
18. Colloidal quantum dots decorated micro-ring resonators for efficient integrated waveguides excitation
- Author
-
Jean-Claude Weeber, Gérard Colas-Des-Francs, Alexandre Bouhelier, Aymeric Leray, Kirill Vasilev, Xiao Yu, Kamal Hammani, Juan-Miguel Arocas, Grégory Gadret, Laurent Markey, Benoit Dubertret
- Published
- 2020
- Full Text
- View/download PDF
19. Delocalized Hot Electron Generation with Propagative Surface Plasmon Polaritons
- Author
-
Olivier Demichel, Renato Juliano Martins, Marlène Petit, Adrian Agreda, Jean-Claude Weeber, Alexandre Bouhelier, Romain Hernandez, Benoit Cluzel, Laboratoire Interdisciplinaire Carnot de Bourgogne (LICB), and Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Physics::Optics ,02 engineering and technology ,01 natural sciences ,7. Clean energy ,law.invention ,010309 optics ,Delocalized electron ,law ,0103 physical sciences ,Electrical and Electronic Engineering ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Plasmon ,ComputingMilieux_MISCELLANEOUS ,Range (particle radiation) ,Plasmonic nanoparticles ,business.industry ,Surface plasmon ,021001 nanoscience & nanotechnology ,Surface plasmon polariton ,Atomic and Molecular Physics, and Optics ,Electronic, Optical and Magnetic Materials ,Optoelectronics ,Astrophysics::Earth and Planetary Astrophysics ,0210 nano-technology ,business ,Waveguide ,Excitation ,Biotechnology - Abstract
Hot electrons generated within plasmonic structures possess a high kinetic energy that can be employed to drive and catalyze a huge range of physicochemical processes at the metallic interface. Up to now, these photogenerated hot carriers were mainly generated within simple plasmonic nanoparticles where hot carrier localization coincides spatially with the position optical excitation. A current challenge for the development of future plasmonic-based hot electron devices requires the ability for a delocalized hot carrier production to control on a large-distance their spatial distribution. Here, we demonstrate the remote generation of hot electrons by launching a propagative surface plasmon on a gold waveguide. Such hot carriers can be produced at distances of several microns from the excitation. Moreover, using far- and near-field hyperspectral microscopy, we show that hot carriers present spatial and energy distributions driven by the propagating plasmon field distribution itself. This opens the door to ...
- Published
- 2019
- Full Text
- View/download PDF
20. Effect of quantized conductivity on the anomalous photon emission radiated from atomic-size point contacts
- Author
-
Mickaël Buret, Gérard Colas des Francs, Alexandre Bouhelier, Alexander V. Uskov, Igor V. Smetanin, Laboratoire Interdisciplinaire Carnot de Bourgogne [Dijon] (LICB), Université de Bourgogne (UB)-Université de Technologie de Belfort-Montbeliard (UTBM)-Centre National de la Recherche Scientifique (CNRS), P. N. Lebedev Physical Institute of the Russian Academy of Sciences [Moscow] (LPI RAS), and Russian Academy of Sciences [Moscow] (RAS)
- Subjects
Photon ,QC1-999 ,FOS: Physical sciences ,02 engineering and technology ,bremsstrahlung ,01 natural sciences ,7. Clean energy ,Electromagnetic radiation ,electromigration ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,0103 physical sciences ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Electrical and Electronic Engineering ,Exponential decay ,010306 general physics ,Physics ,Condensed Matter - Mesoscale and Nanoscale Physics ,quantized conductivity ,Bremsstrahlung ,Conductance ,visible light emission ,021001 nanoscience & nanotechnology ,Atomic and Molecular Physics, and Optics ,Electronic, Optical and Magnetic Materials ,Light intensity ,Atomic radius ,point contact ,Light emission ,Atomic physics ,0210 nano-technology ,Optics (physics.optics) ,Biotechnology ,Physics - Optics - Abstract
We observe anomalous visible to near-infrared electromagnetic radiation emitted from electrically driven atomic-size point contacts. We show that the number of photons released strongly depends on the quantized conductance steps of the contact. Counter-intuitively, the light intensity features an exponential decay dependence with the injected electrical power. We propose an analytical model for the light emission considering an out-of-equilibrium electron distribution. We treat photon emission as bremsstrahlung process resulting from hot electrons colliding with the metal boundary and a find qualitative accord with the experimental data., Main manuscript plus supplementary information
- Published
- 2019
- Full Text
- View/download PDF
21. Spatial Distribution of the Nonlinear Photoluminescence in Au Nanowires
- Author
-
Olivier Demichel, G. V. Pavan Kumar, Deepak Sharma, Jean-Claude Weeber, Benoit Cluzel, Alexandre Bouhelier, Gérard Colas des Francs, Adrian Agreda, Romain Hernandez, Sviatlana Viarbitskaya, Laboratoire Interdisciplinaire Carnot de Bourgogne (LICB), Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS), and Indian Institute of Science Education and Research Pune (IISER Pune)
- Subjects
Materials science ,Photoluminescence ,Spectral signature ,Surface plasmon ,Nanowire ,Physics::Optics ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Molecular physics ,Surface plasmon polariton ,Atomic and Molecular Physics, and Optics ,Electronic, Optical and Magnetic Materials ,010309 optics ,Excited state ,[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other] ,0103 physical sciences ,Femtosecond ,Emission spectrum ,Electrical and Electronic Engineering ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS ,Biotechnology - Abstract
When gold nanowires are excited with a tightly focused femtosecond laser a distributed nonlinear photoluminescence (N-PL) develops throughout the entire structure. A complete spaced-resolved analysis of the spectral signature of the nanowire nonlinear response is carried out to understand the origin of the distributed nonlinear response. We discuss various mechanisms to explain the experimental data and unambiguously demonstrate that the spatial and spectral extension of the N-PL in the nanowire are mainly dictated by the propagation of a surface plasmon excited at the pump wavelength. We also present experimental signature of near-field excitation of a broadband continuum of surface plasmons excited locally throughout the N-PL emission spectrum.
- Published
- 2019
- Full Text
- View/download PDF
22. Spectral pointillism of enhanced Raman scattering for accessing structural and conformational information on single protein
- Author
-
Alexandre Bouhelier, Eric Finot, Jean-Emmanuel Clément, and Aymeric Leray
- Subjects
Protein Conformation ,General Physics and Astronomy ,Complete protein ,02 engineering and technology ,Spectrum Analysis, Raman ,010402 general chemistry ,01 natural sciences ,Spectral line ,symbols.namesake ,Protein structure ,Animals ,Amino Acids ,Physical and Theoretical Chemistry ,Bovine serum albumin ,chemistry.chemical_classification ,biology ,Chemistry ,Tryptophan ,Serum Albumin, Bovine ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Amino acid ,Crystallography ,biology.protein ,symbols ,Cattle ,0210 nano-technology ,Raman spectroscopy ,Raman scattering - Abstract
In this contribution, we provide new insights on the temporal fluctuations of surface enhanced Raman spectra (SERS) of large single molecules such as proteins. Because they can only fit partly into small active volume, SERS analysis is referred to spectral pointillism where only protein subdomains are shined and the whole protein landscape is built from the dynamics of successive individual spectra. By applying our approach on bovine serum albumin, we show that single protein subdomains are mostly comprised of three distinct amino acids. Surface amino acids such as lysine are preferentially detected in the open form of the protein. The investigation of the tryptophan Fermi doublet in the single protein regime is highly instructive on the protein conformation. We finally demonstrate that spectral pointillism enables to correlate individual amino acids with structural information.
- Published
- 2017
- Full Text
- View/download PDF
23. Discrimination between Single Protein Conformations Using Dynamic SERS
- Author
-
Thibault Brulé, Eric Finot, Alexandre Bouhelier, and Alain Dereux
- Subjects
Bioengineering ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Spectral line ,symbols.namesake ,Tyrosine ,Bovine serum albumin ,Instrumentation ,Histidine ,Fluid Flow and Transfer Processes ,chemistry.chemical_classification ,biology ,Chemistry ,Process Chemistry and Technology ,Tryptophan ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Amino acid ,Biochemistry ,biology.protein ,Biophysics ,symbols ,Leucine ,0210 nano-technology ,Raman spectroscopy - Abstract
In biomedicine and biophysics, the discrimination of protein conformations is of critical importance for identifying the unfolding states in the diagnosis of neurodegenerative diseases. We develop a dynamic Raman spectroscopic approach based on a statistical analysis of the time series of spectral fingerprints of single protein. We show that the unfolded state of bovine serum albumin can be identified in the time series using the fluctuations of the Raman bands of some amino acids, tryptophan, tyrosine, leucine, and histidine, acting as biomarkers. The statistical analysis induces also the sorting between physisorption and chemisorption events. This is confirmed by the spectral analysis of the different characteristic spectra highlighted based on the amino acids fingerprints following, notably, the hydrophobicity
- Published
- 2016
- Full Text
- View/download PDF
24. Colloidal Quantum Dot Integrated Light Sources for Plasmon Mediated Photonic Waveguide Excitation
- Author
-
Arunandan Kumar, Juan Arocas, Benoit Dubertret, Gérard Colas-des-Francs, F. Eloi, Alexandre Bouhelier, Jean-Pierre Hermier, Stéphanie Buil, Kamal Hammani, Jean-Claude Weeber, Michel Nasilowski, and Xavier Quélin
- Subjects
Materials science ,Physics::Optics ,02 engineering and technology ,01 natural sciences ,law.invention ,010309 optics ,Optics ,law ,0103 physical sciences ,Electrical and Electronic Engineering ,Plasmon ,business.industry ,Photonic integrated circuit ,Surface plasmon ,021001 nanoscience & nanotechnology ,Atomic and Molecular Physics, and Optics ,Electronic, Optical and Magnetic Materials ,Lens (optics) ,Quantum dot ,Optoelectronics ,Photonics ,0210 nano-technology ,business ,Waveguide ,Excitation ,Biotechnology - Abstract
We operate micron-sized CdSe/CdS core–shell quantum dot (QD) clusters deposited onto gold patches as integrated light sources for the excitation of photonic waveguides. The surface plasmon mode launched by the QD fluorescence at the top interface of the gold patches are efficiently coupled to photonic modes sustained by titanium dioxide ridge waveguides. We show that, despite a large effective index difference, the plasmonic and the photonic modes can couple with a very high efficiency provided the vertical offset between the two kinds of waveguides is carefully controlled. Based on the effective index contrast of the plasmonic and the photonic modes, we engineer in-plane integrated hybrid lenses. The hybrid lenses are obtained by shaping the contact interface between the plasmonic and the photonic waveguides. We demonstrate a 2-fold enhancement of the coupling efficiency for tapers equipped with a hybrid lens. Our results are expected to be useful for the development of low-cost, integrated light sources...
- Published
- 2016
- Full Text
- View/download PDF
25. Directional Second Harmonic Generation Controlled by Sub-wavelength Facets of an Organic Mesowire
- Author
-
G. V. Pavan Kumar, Alexandre Bouhelier, Deepak Sharma, Ravi P. N. Tripathi, Shailendra K. Chaubey, Adarsh B. Vasista, and Jesil Jose Karumancheril
- Subjects
FOS: Physical sciences ,Physics::Optics ,02 engineering and technology ,Condensed Matter - Soft Condensed Matter ,01 natural sciences ,Signal ,010309 optics ,Optics ,0103 physical sciences ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,High harmonic generation ,Electrical and Electronic Engineering ,Engineering (miscellaneous) ,Physics ,Condensed Matter - Mesoscale and Nanoscale Physics ,business.industry ,Second-harmonic generation ,Nonlinear optics ,021001 nanoscience & nanotechnology ,Atomic and Molecular Physics, and Optics ,Dipole ,Nonlinear system ,Excited state ,Soft Condensed Matter (cond-mat.soft) ,0210 nano-technology ,business ,Excitation ,Optics (physics.optics) ,Physics - Optics - Abstract
Directional harmonic generation is an important property characterizing the ability of nonlinear optical antennas to diffuse the signal in well-defined region of space. Herein, we show how sub-wavelength facets of an organic molecular mesowire crystal can be utilized to systematically vary the directionality of second harmonic generation (SHG) in the forward scattering geometry. We demonstrate this capability on crystalline diamonoanthraquinone (DAAQ) mesowires with subwavelength facets. We observed that the radial angles of the SHG emission can be tuned over a range of 130 degrees. This angular variation arises due to spatially distributed nonlinear dipoles in the focal volume of the excitation as well as the geometrical cross-section and facet orientation of the mesowire. Numerical simulations of the near-field excitation profile corroborate the role of the mesowire geometry in localizing the electric field. In addition to directional SHG from the mesowire, we experimentally observe optical waveguiding of the nonlinear two-photon excited fluorescence (TPEF). Interestingly, we observed that for a given pump excitation, the TPEF signal is isotropic and delocalized, whereas the SHG emission is directional and localized at the location of excitation. All the observed effects have direct implications not only in active nonlinear optical antennas, but also in nonlinear signal processing., Accepted in Applied Optics
- Published
- 2018
26. Stimulated emission of phonons and plasmons by ballistic electrons in nanoscale contacts
- Author
-
F.A. Shuklin, Igor E. Protsenko, Jacob B. Khurgin, Igor V. Smetanin, Ivan Mukhin, Alexandre Bouhelier, and Alexander V. Uskov
- Subjects
Materials science ,Condensed matter physics ,Phonon ,Electric potential ,Electron ,Stimulated emission ,Nanoscopic scale ,Plasmon - Abstract
We show that the rate of stimulated emission by electron, passing through nanoscale constriction, can beenhanced substantially (by several orders) with proper tailoring of the constriction shape.
- Published
- 2018
- Full Text
- View/download PDF
27. Hot electron generation and dynamics within plasmonic nano-antenna (Conference Presentation)
- Author
-
Régis Méjard, Olivier Demichel, Benoit Cluzel, and Alexandre Bouhelier
- Subjects
Photoluminescence ,Materials science ,business.industry ,Fermi level ,Physics::Optics ,Condensed Matter::Materials Science ,symbols.namesake ,Picosecond ,symbols ,Optoelectronics ,Relaxation (physics) ,Antenna (radio) ,Photonics ,business ,Ultrashort pulse ,Plasmon - Abstract
Hot carriers are energetic photoexcited carriers driving a large range of chemicophysical mechanisms. At the nanoscale, an efficient generation of these carriers is facilitated by illuminating plasmonic antennas. However, the ultrafast relaxation rate severally impedes their deployment in future hot-carrier based devices. In this paper, we report on the picosecond relaxation dynamics of hot carriers in plasmonic monocrystalline gold nanoantennas. The ultrafast dynamics of the hot carriers is experimentally investigated by interrogating the nonlinear photoluminescence response of the antenna [1]. From this investigation, we reveal some leverages to control the dynamics of such hot carriers within nano antenna. In particular, an increase by a factor up to five of this dynamics (from 0.5 ps to 2.5 ps) is observed for resonant nanoantenna compared to off-resonance antenna and when excitation power increases. By a two temperature model we model quantitatively the dynamics of hot carriers and we demonstrate the nonlinear generation of these carriers. The control over the carrier dynamics should allow to employ their energy more effieciently within physico-chemical processes. In a second part, we investigate the hot carrier dynamics with a spectrally resolved two-pulse correlation configuration, and demonstrate that the relaxation of the photoexcited carriers depends of their energies relative to the Fermi level. We find a 60% variation in the relaxation rate for electron−hole pair energies ranging from ca. 0.2 to 1.8 eV. The quantitative relationship between hot-carrier energy and relaxation dynamics is an important finding for optimizing hot-carrier-assisted processes and shed new light on the intricacy of nonlinear photoluminescence in plasmonic [2]. [1] O. Demichel et al, ACS Photonics 3, 791 (2016) [2] R. Mejard et al, ACS Photonics 3, 1482 (2016)
- Published
- 2018
- Full Text
- View/download PDF
28. Biased Nanoscale Contact as Active Element for Electrically Driven Plasmonic Nanoantenna
- Author
-
Alexandre Bouhelier, Igor E. Protsenko, Mickaël Buret, Jacob B. Khurgin, Alexander V. Uskov, and Igor V. Smetanin
- Subjects
Orders of magnitude (temperature) ,FOS: Physical sciences ,02 engineering and technology ,01 natural sciences ,Electromagnetic radiation ,Ballistic conduction ,0103 physical sciences ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,Electrical and Electronic Engineering ,010306 general physics ,Plasmon ,Quantum tunnelling ,Physics ,Condensed Matter - Mesoscale and Nanoscale Physics ,business.industry ,Biasing ,021001 nanoscience & nanotechnology ,Atomic and Molecular Physics, and Optics ,Electronic, Optical and Magnetic Materials ,Optoelectronics ,Light emission ,0210 nano-technology ,Driven element ,business ,Biotechnology ,Optics (physics.optics) ,Physics - Optics - Abstract
Electrically driven optical antennas can serve as compact sources of electromagnetic radiation operating at optical frequencies. In the most widely explored configurations, the radiation is generated by electrons tunneling between metallic parts of the structure when a bias voltage is applied across the tunneling gap. Rather than relying on an inherently inefficient inelastic light emission in the gap, we suggest to use a ballistic nanoconstriction as the feed element of an optical antenna supporting plasmonic modes. We discuss the underlying mechanisms responsible for the optical emission and show that, with such a nanoscale contact, one can reach quantum efficiency orders of magnitude larger than with standard light-emitting tunneling structures.
- Published
- 2018
29. Electromigrated electrical optical antennas for transducing electrons and photons at the nanoscale
- Author
-
Kamal Hammani, Juan Arocas, Jean-Claude Weeber, Alexander V. Uskov, Alexandre Bouhelier, Gérard Colas des Francs, Igor V. Smetanin, Arindam Dasgupta, M. Buret, Reinaldo Chacon, Nicolas Cazier, Laurent Markey, and Marie-Maxime Mennemanteuil
- Subjects
Materials science ,Photon ,General Physics and Astronomy ,02 engineering and technology ,Electron ,lcsh:Chemical technology ,01 natural sciences ,Electromigration ,Atomic units ,lcsh:Technology ,Full Research Paper ,electromigration ,tunnel junction ,Fowler–Nordheim ,Tunnel junction ,hot-electron emission ,transition voltage ,0103 physical sciences ,Nanotechnology ,General Materials Science ,lcsh:TP1-1185 ,Electrical and Electronic Engineering ,010306 general physics ,lcsh:Science ,Quantum tunnelling ,inelastic electron tunneling ,business.industry ,lcsh:T ,optical antennas ,021001 nanoscience & nanotechnology ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,lcsh:QC1-999 ,Nanoscience ,Optoelectronics ,Light emission ,lcsh:Q ,Photonics ,0210 nano-technology ,business ,lcsh:Physics - Abstract
Background: Electrically controlled optical metal antennas are an emerging class of nanodevices enabling a bilateral transduction between electrons and photons. At the heart of the device is a tunnel junction that may either emit light upon injection of electrons or generate an electrical current when excited by a light wave. The current study explores a technological route for producing these functional units based upon the electromigration of metal constrictions.Results: We combine multiple nanofabrication steps to realize in-plane tunneling junctions made of two gold electrodes, separated by a sub-nanometer gap acting as the feedgap of an optical antenna. We electrically characterize the transport properties of the junctions in the light of the Fowler–Nordheim representation and the Simmons model for electron tunneling. We demonstrate light emission from the feedgap upon electron injection and show examples of how this nanoscale light source can be coupled to waveguiding structures.Conclusion: Electromigrated in-plane tunneling optical antennas feature interesting properties with their unique functionality enabling interfacing electrons and photons at the atomic scale and with the same device. This technology may open new routes for device-to-device communication and for interconnecting an electronic control layer to a photonic architecture.
- Published
- 2018
30. Statistical and Fourier Analysis for In-line Concentration Sensitivity in Single Molecule Dynamic-SERS
- Author
-
Thibault Brulé, Alain Dereux, Eric Finot, Jean-Emmanuel Clément, Hélène Yockell-Lelièvre, Aymeric Leray, and Alexandre Bouhelier
- Subjects
Materials science ,business.industry ,Pink noise ,Molecular physics ,Atomic and Molecular Physics, and Optics ,Cutoff frequency ,Electronic, Optical and Magnetic Materials ,symbols.namesake ,Optics ,Transducer ,Fourier analysis ,Nanosensor ,Frequency domain ,symbols ,Electrical and Electronic Engineering ,business ,Raman spectroscopy ,Raman scattering ,Biotechnology - Abstract
The Raman intensity fluctuations are the initial source of a lack of accuracy or reproducibility of SERS based nanosensors to reliably estimate the molecular concentration in microfluidics. Here, we show that the statistical analysis of the weighting of Raman scattering of the probed molecules compared to the photoluminescence of gold nanoparticles is particularly effective as a concentration indicator in a single molecule regime. We present a novel approach in the Fourier domain that is not limited by a multipoint precalibration or even the knowledge of the enhancement factor of the transducer. The analysis of pink noise in the frequency domain reveals a subdiffusion motion of individual adsorbed molecules in the hot-spot. The cutoff frequency between the white and pink noise is used to determine the in-line molecular concentration over a wide range between 10–11 and 10–6 M.
- Published
- 2015
- Full Text
- View/download PDF
31. Designing plasmonic eigenstates for optical signal transmission in planar channel devices
- Author
-
Gérard Colas des Francs, Upkar Kumar, Aurélien Cuche, Alexandre Bouhelier, Erik Dujardin, Sreenath Bolisetty, Christian Girard, Sviatlana Viarbitskaya, Raffaele Mezzenga, Centre d'élaboration de matériaux et d'études structurales ( CEMES ), Institut National des Sciences Appliquées - Toulouse ( INSA Toulouse ), Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Université Paul Sabatier - Toulouse 3 ( UPS ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire Interdisciplinaire Carnot de Bourgogne ( LICB ), Université de Bourgogne ( UB ) -Centre National de la Recherche Scientifique ( CNRS ), ETH Zurich, Department of Health Sciences and Technology, Swiss Federal Institute of Technology in Zürich ( ETH Zürich ), ETH Zürich, Department of Health Sciences and Technology, Groupe NanoSciences (CEMES-GNS), Centre d'élaboration de matériaux et d'études structurales (CEMES), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie de Toulouse (ICT-FR 2599), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Laboratoire Interdisciplinaire Carnot de Bourgogne (LICB), Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS), Nano-Optique et Nanomatériaux pour l'optique (CEMES-NeO), Department of Health Sciences and Technology [ETH Zürich] (D-HEST), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), and Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB)
- Subjects
non-linear luminescence ,surface plasmon ,Nanophotonics ,[ PHYS.COND.CM-MS ] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,FOS: Physical sciences ,Physics::Optics ,02 engineering and technology ,01 natural sciences ,Signal ,010309 optics ,LDOS ,Delocalized electron ,0103 physical sciences ,Transmittance ,Electrical and Electronic Engineering ,transmittance and routing devices ,Plasmon ,Physics ,plasmonic eigenmodes ,Condensed Matter - Materials Science ,Mesoscopic physics ,[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,[ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics] ,business.industry ,Linear polarization ,Surface plasmon ,Materials Science (cond-mat.mtrl-sci) ,021001 nanoscience & nanotechnology ,Atomic and Molecular Physics, and Optics ,Electronic, Optical and Magnetic Materials ,2D crystalline gold ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,Optoelectronics ,[ SPI.OPTI ] Engineering Sciences [physics]/Optics / Photonic ,0210 nano-technology ,business ,Physics - Optics ,Optics (physics.optics) ,Biotechnology - Abstract
International audience; On-chip optoelectronic and all-optical information processing paradigms require compact implementation of signal transfer for which nanoscale surface plasmons circuitry offers relevant solutions. This work demonstrates the directional signal transmittance mediated by 2D plasmonic eigenmodes supported by crystalline cavities. Channel devices comprising two mesoscopic triangular input and output ports and sustaining delocalized, higher-order plasmon resonances in the visible to infra-red range are shown to enable the controllable transmittance between two confined entry and exit ports coupled over a distance exceeding 2 μm. The transmittance is attenuated by > 20dB upon rotating the incident linear polarization, thus offering a convenient switching mechanism. The optimal transmittance for a given operating wavelength depends on the geometrical design of the device that sets the spatial and spectral characteristic of the supporting delocalized mode. Our approach is highly versatile and opens the way to more complex information processing using pure plasmonic or hybrid nanophotonic architectures.
- Published
- 2017
- Full Text
- View/download PDF
32. Significant decrease of the optical losses in the coupling between colloidal CdSe/CdS nanocrystals and a flat gold film at cryogenic temperature
- Author
-
Alexandre Bouhelier, J.-C. Weeber, Jean-Pierre Hermier, Benoit Dubertret, Michel Nasilowski, Stéphanie Buil, Xavier Quélin, A. Coste, F. Eloi, Christophe Arnold, G. Colas des Francs, Laboratoire de Physique Théorique d'Orsay [Orsay] (LPT), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), Développement et physiopathologie de l'intestin et du pancréas, Institut National de la Santé et de la Recherche Médicale (INSERM), Laboratoire Interdisciplinaire Carnot de Bourgogne (LICB), Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS), Groupe d'Etude de la Matière Condensée (GEMAC), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,business.industry ,Gold film ,Nanotechnology ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Coupling (electronics) ,Colloid ,Nanocrystal ,[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other] ,0103 physical sciences ,Optoelectronics ,010306 general physics ,0210 nano-technology ,Cryogenic temperature ,business ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2017
- Full Text
- View/download PDF
33. Local field enhancement and thermoplasmonics in multimodal aluminum structures
- Author
-
Peter R. Wiecha, Jérôme Plain, Alexandre Bouhelier, Jérôme Martin, Arnaud Arbouet, Davy Gérard, Aurélien Cuche, Marie-Maxime Mennemanteuil, Dmitry Khlopin, Nano-Optique et Nanomatériaux pour l'optique ( CEMES-NeO ), Centre d'élaboration de matériaux et d'études structurales ( CEMES ), Institut National des Sciences Appliquées - Toulouse ( INSA Toulouse ), Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Université Paul Sabatier - Toulouse 3 ( UPS ) -Centre National de la Recherche Scientifique ( CNRS ) -Institut National des Sciences Appliquées - Toulouse ( INSA Toulouse ), Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Université Paul Sabatier - Toulouse 3 ( UPS ) -Centre National de la Recherche Scientifique ( CNRS ), Nano Optics and Near-field spectroscopy Group, King‘s College London, Laboratoire de Nanotechnologie et d'Instrumentation Optique ( LNIO ), Institut Charles Delaunay ( ICD ), Université de Technologie de Troyes ( UTT ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Technologie de Troyes ( UTT ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire Interdisciplinaire Carnot de Bourgogne ( LICB ), Université de Bourgogne ( UB ) -Centre National de la Recherche Scientifique ( CNRS ), Nano-Optique et Nanomatériaux pour l'optique (CEMES-NeO), Centre d'élaboration de matériaux et d'études structurales (CEMES), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), Université de Technologie de Belfort-Montbeliard (UTBM)-Université de Bourgogne (UB)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Nanotechnologie et d'Instrumentation Optique (LNIO), Institut Charles Delaunay (ICD), Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS)-Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS), Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie de Toulouse (ICT-FR 2599), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Laboratoire Interdisciplinaire Carnot de Bourgogne [Dijon] (LICB), Université de Bourgogne (UB)-Université de Technologie de Belfort-Montbeliard (UTBM)-Centre National de la Recherche Scientifique (CNRS), and Laboratoire Interdisciplinaire Carnot de Bourgogne (LICB)
- Subjects
fano-resonant aluminum ,Nanostructure ,Photoluminescence ,Materials science ,Field (physics) ,FOS: Physical sciences ,plasmonic materials ,02 engineering and technology ,7. Clean energy ,01 natural sciences ,Optics ,Electric field ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,0103 physical sciences ,Thermal ,nanostructures ,ultraviolet ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,conversion ,010306 general physics ,Plasmon ,[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,[ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics] ,Condensed Matter - Mesoscale and Nanoscale Physics ,business.industry ,Surface plasmon ,nanoplasmonics ,gold ,021001 nanoscience & nanotechnology ,Polarization (waves) ,nanoprisms ,nanoantennas ,Optoelectronics ,nanoparticles ,0210 nano-technology ,business ,[ PHYS.COND ] Physics [physics]/Condensed Matter [cond-mat] - Abstract
Aluminum nanostructures have recently been at the focus of numerous studies due to their properties including oxidation stability and surface plasmon resonances covering the ultraviolet and visible spectral windows. In this article, we reveal a new facet of this metal relevant for both plasmonics purpose and photo-thermal conversion. The field distribution of high order plasmonic resonances existing in two-dimensional Al structures is studied by nonlinear photoluminescence (nPL) microscopy in a spectral region where electronic interband transitions occur. The polarization sensitivity of the field intensity maps shows that the electric field concentration can be addressed and controlled on-demand. We use a numerical tool based on the Green dyadic method to analyze our results and to simulate the absorbed energy that is locally converted into heat. The polarization-dependent temperature increase of the Al structures is experimentally quantitatively measured, and is in an excellent agreement with theoretical predictions. Our work highlights Al as a promising candidate for designing thermal nanosources integrated in coplanar geometries for thermally assisted nanomanipulation or biophysical applications., 8 pages 6 figures main article; 7 pages 9 figures supporting informations
- Published
- 2017
- Full Text
- View/download PDF
34. Hot electrons and nonlinear optical nanoantennas
- Author
-
Benoit Cluzel, Olivier Demichel, Alexandre Bouhelier, Regis Mejard, and Sviatlana Viarbitskaya
- Subjects
Physics ,Sum-frequency generation ,business.industry ,Optical physics ,Physics::Optics ,Resonance ,Nonlinear optics ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,010309 optics ,Nonlinear system ,Optics ,Cross-polarized wave generation ,0103 physical sciences ,Femtosecond ,Optoelectronics ,0210 nano-technology ,business ,Plasmon - Abstract
The large field enhancement generated at the surface of a resonant plasmonic nanoparticle, or optical antennas, is the key mechanism that eventually led to the development of nonlinear plasmonics [1-2]. While the resonance may boost the nonlinear yield of an adjacent structure or surrounding medium, it was soon realized that optical antennas possess nonlinear coefficients comparable or exceeding those of standard nonlinear optical materials [3]. We discuss here two nonlinear optical processes — incoherent multi-photon luminescence (MPL) and coherent second-harmonic generation (SHG) — emitted from gold rod optical antennas upon local illumination with a tightly focused femtosecond near-infrared laser beam.
- Published
- 2017
- Full Text
- View/download PDF
35. New approaches to electrically driven nanoantennas
- Author
-
Igor E. Protsenko, A. O. Goludok, Alexander V. Uskov, M. Buret, Alexandre Bouhelier, Igor V. Smetanin, Jacob B. Khurgin, and Ivan Mukhin
- Subjects
Physics ,Mesoscopic physics ,Photon ,Semiconductor ,business.industry ,Optoelectronics ,Quantum efficiency ,Light emission ,Spontaneous emission ,Photonics ,business ,Quantum tunnelling - Abstract
Electrically Driven Optical Antennas represent promising issues for integrated plasmonic nanosources. However, their low quantum efficiency (QE) remains a major hurdle. To address this issue, we analyze the different light emission mechanisms in planar nanoscale devices. We found that the electrical properties of the device are dictating the processes at play. For low device conductance, photons are essentially emitted by inelastic tunneling events and the applied voltage sets the highest photon energy. For high conductance gap antennas, we show that the spectrum released by the device originates from the spontaneous emission of out-of-equilibrium electronic distribution. We then propose a novel route for increasing the QE. Estimation shows that if the nanoantennas are excited by electrons passing ballistically through mesoscopic contacts constituting the antenna, the excitation QE may reach ∼ 0.01–0.1. Finally, we explore an alternative approach based on charge injection in semiconductor Mie resonators.
- Published
- 2017
- Full Text
- View/download PDF
36. Selective excitation of surface plasmon modes propagating in Ag nanowires
- Author
-
Mingxia, Song, Jean, Dellinger, Olivier, Demichel, Mickaël, Buret, Gérard, Colas Des Francs, Douguo, Zhang, Erik, Dujardin, and Alexandre, Bouhelier
- Abstract
Surface plasmon modes propagating in metal nanowires are conveniently excited by focusing a laser beam on one extremity of the nanowire. We find that the precise positioning of the nanowire inside the focal region drastically influences the excitation efficiency of the different SPP modes sustained by the plasmonic waveguide. We demonstrate a spatially selective excitation of bound and leaky surface plasmon modes with excitation maps that strongly depend on the orientation of the incident linear polarization. We discuss this modal selection by considering the inhomogeneous distribution of the field components inside the focus. Our finding provides a way to discriminate the effective indices of the modes offering thus an increased coupling agility for future nanowire-based plasmonic architectures.
- Published
- 2017
37. Electrically-driven optical antennas enabled by mesoscopic contacts
- Author
-
Mikael Buret, Alexander V. Uskov, Alexandre Bouhelier, Igor E. Protsenko, Jacob B. Khurgin, and Igor V. Smetanin
- Subjects
Physics ,Mesoscopic physics ,Nanostructure ,business.industry ,Surface plasmon ,Physics::Optics ,Biasing ,02 engineering and technology ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,021001 nanoscience & nanotechnology ,01 natural sciences ,Optics ,Ballistic conduction ,0103 physical sciences ,Light emission ,010306 general physics ,0210 nano-technology ,business ,Plasmon ,Quantum tunnelling - Abstract
Electrically driven optical antennas are attracting much attention, in particular, due to necessity to develop integrated electrical source of surface plasmons for future plasmonic nanocircuitries. By default, this term denotes a metal nanostructure, in which electromagnetic oscillations at optical frequencies are excited by electrons, tunneling between metallic parts of the structure when a bias voltage is applied between them. Instead of relying on an inefficient inelastic light emission in a tunnel gap, we are suggesting to use ballistic nanoconstrictions as the feed element of an optical antennas in order to excite electromagnetic plasmonic modes. Similarly to tunneling structures, the voltage applied at the constriction falls over the contact of nanoscale length. Electron passing through the contact ballistically can gain the energy provided by the bias ~1eV and exchange it into an mode of the optical antenna. We discussed the underlying mechanisms responsible for the optical emission, and show that with nanoscale contact, one can reach quantum efficiency orders of magnitude larger than with standard tunneling structures.
- Published
- 2017
- Full Text
- View/download PDF
38. Sorting of Enhanced Reference Raman Spectra of a Single Amino Acid Molecule
- Author
-
Laurent Markey, Alain Dereux, Thibault Brulé, Eric Finot, Aymeric Leray, Hélène Yockell-Lelièvre, Alexandre Bouhelier, Jérémie Margueritat, Laboratoire Interdisciplinaire Carnot de Bourgogne (LICB), Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS), Institut Lumière Matière [Villeurbanne] (ILM), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, Institut de Recherche Interdisciplinaire [Villeneuve d'Ascq] (IRI), Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Droit et Santé-Université de Lille, Sciences et Technologies, Laboratoire Interdisciplinaire Carnot de Bourgogne [Dijon] (LICB), and Université de Bourgogne (UB)-Université de Technologie de Belfort-Montbeliard (UTBM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
chemistry.chemical_classification ,[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,Quantitative Biology::Biomolecules ,Sorting ,Nanoparticle ,Active surface ,Quantitative Biology::Genomics ,Spectral line ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Amino acid ,Crystallography ,symbols.namesake ,General Energy ,Adsorption ,chemistry ,symbols ,Molecule ,Physical and Theoretical Chemistry ,Raman spectroscopy ,ComputingMilieux_MISCELLANEOUS - Abstract
In this contribution, we report the identification of the principal reference Raman spectra of a single cystein molecule. To that purpose, we design an active Surface Enhanced Raman Spectroscopy (SERS) template based on surfactant-less Chebyshev nanoparticles operating in a microfluidic platform. A principal component analysis is obtained from fluctuating spectra to sort the reference spectra of cystein. The assignment of Raman bands brings new insight into the conformation of an amino acid adsorbed onto gold nanoparticle.
- Published
- 2014
- Full Text
- View/download PDF
39. Single-Crystal vs Polycrystalline Gold: A Non-linear-Optics Analysis
- Author
-
A. Verdy, Olivier Demichel, Regis Mejard, Alexandre Bouhelier, Marlène Petit, and Benoit Cluzel
- Subjects
Materials science ,business.industry ,Sputtering ,Optoelectronics ,Nonlinear optics ,Surface finish ,Crystallite ,Thin film ,business ,Evaporation (deposition) ,Single crystal ,Plasmon - Abstract
Standard gold in the field of plasmonics is obtained by evaporation or sputtering and therefore is polycrystalline. Yet, this gold presents numbers of drawbacks such as roughness, grains and ill-defined electronic band diagrams in addition to the lack of reproducibility from one instrument to another. It is, thus, beneficial to turn to a metal production that can enable well-defined and controlled gold parameters. To that end, we have explored the wet synthesis of gold nanoplates which represents a simple and robust means of obtaining single-crystal gold (Guo Z, Zhang Y, DuanMu Y, Xu L, Xie S, Gu N, Colloids Surf A 278:33–38, 2006). The synthesized nanoplates are from 50 to less than 100 nm in thickness and can span over micrometers in lateral dimensions corresponding to areas of several hundreds of μm2. They can thus be considered as thin film material perfectly suitable for plasmonic applications.
- Published
- 2017
- Full Text
- View/download PDF
40. Plasmonic Purcell factor and coupling efficiency to surface plasmons. Implications for addressing and controlling optical nanosources
- Author
-
Jean-Claude Weeber, Julien Barthes, Aurélien Cuche, C. Girard, Alexandre Bouhelier, G. Colas des Francs, Alain Dereux, Laboratoire Interdisciplinaire Carnot de Bourgogne [Dijon] (LICB), Université de Bourgogne (UB)-Université de Technologie de Belfort-Montbeliard (UTBM)-Centre National de la Recherche Scientifique (CNRS), Nano-Optique et Nanomatériaux pour l'optique (CEMES-NeO), Centre d'élaboration de matériaux et d'études structurales (CEMES), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie de Toulouse (ICT-FR 2599), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Laboratoire Interdisciplinaire Carnot de Bourgogne [Dijon] ( LICB ), Université de Technologie de Belfort-Montbeliard ( UTBM ) -Université de Bourgogne ( UB ) -Centre National de la Recherche Scientifique ( CNRS ), Nano-Optique et Nanomatériaux pour l'optique ( CEMES-NeO ), Centre d'élaboration de matériaux et d'études structurales ( CEMES ), Institut National des Sciences Appliquées - Toulouse ( INSA Toulouse ), Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Université Paul Sabatier - Toulouse 3 ( UPS ) -Centre National de la Recherche Scientifique ( CNRS ) -Institut National des Sciences Appliquées - Toulouse ( INSA Toulouse ), Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Université Paul Sabatier - Toulouse 3 ( UPS ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), Université de Technologie de Belfort-Montbeliard (UTBM)-Université de Bourgogne (UB)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Interdisciplinaire Carnot de Bourgogne [Dijon] (ICB), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), and Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SHS.INFO]Humanities and Social Sciences/Library and information sciences ,Nanophotonics ,FOS: Physical sciences ,Physics::Optics ,02 engineering and technology ,01 natural sciences ,Delocalized electron ,Optics ,Quantum mechanics ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,0103 physical sciences ,[ SHS.INFO ] Humanities and Social Sciences/Library and information sciences ,010306 general physics ,Plasmon ,Physics ,Condensed Matter - Mesoscale and Nanoscale Physics ,business.industry ,Surface plasmon ,Cavity quantum electrodynamics ,Order (ring theory) ,Resonance ,021001 nanoscience & nanotechnology ,Coupling (probability) ,Atomic and Molecular Physics, and Optics ,Electronic, Optical and Magnetic Materials ,0210 nano-technology ,business ,Physics - Optics ,Optics (physics.optics) - Abstract
The Purcell factor $F_p$ is a key quantity in cavity quantum electrodynamics (cQED) that quantifies the coupling rate between a dipolar emitter and a cavity mode. Its simple form $F_p\propto Q/V$ unravels the possible strategies to enhance and control light-matter interaction. Practically, efficient light-matter interaction is achieved thanks to either i) high quality factor $Q$ at the basis of cQED or ii) low modal volume $V$ at the basis of nanophotonics and plasmonics. In the last decade, strong efforts have been done to derive a plasmonic Purcell factor in order to transpose cQED concepts to the nanocale, in a scale-law approach. In this work, we discuss the plasmonic Purcell factor for both delocalized (SPP) and localized (LSP) surface-plasmon-polaritons and briefly summarize the expected applications for nanophotonics. On the basis of the SPP resonance shape (Lorentzian or Fano profile), we derive closed form expression for the coupling rate to delocalized plasmons. The quality factor factor and modal confinement of both SPP and LSP are quantified, demonstrating their strongly subwavelength behaviour., Comment: Journal of Optics (in press)
- Published
- 2016
- Full Text
- View/download PDF
41. Nanoscale constriction as a source of plasmons for plasmonic nanocircuitries
- Author
-
Igor E. Protsenko, Alexander V. Uskov, Jacob B. Khurgin, Alexandre Bouhelier, M. Buret, and Igor V. Smetanin
- Subjects
Physics ,Mesoscopic physics ,Astrophysics::High Energy Astrophysical Phenomena ,02 engineering and technology ,Electron ,021001 nanoscience & nanotechnology ,01 natural sciences ,Constriction ,0103 physical sciences ,Light emission ,Atomic physics ,010306 general physics ,0210 nano-technology ,Nanoscopic scale ,Plasmon - Abstract
We investigate spontaneous light emission by electrons passing through a nanoscale metal constriction and find that the Purcell-enhanced emission is engendered by two distinct mechanisms. In the first mechanism emission is caused by electron colliding with the effective potential of the mesoscopic contact while the second mechanism involves collisions of electrons with the walls of the constriction. We find that multiple collisions with the walls can lead to the orders-of-magnitude higher light emission probability in comparison to a single collision with the effective potential.
- Published
- 2016
- Full Text
- View/download PDF
42. Nanoresotron - novel concept of optical nanoantenna excitation through the dissipative instability of DC current
- Author
-
Alexander V. Uskov, Alexandre Bouhelier, Igor V. Smetanin, and Igor E. Protsenko
- Subjects
Physics ,business.industry ,Physics::Optics ,Instability ,Dc current ,Quantum mechanics ,Dissipative system ,Optoelectronics ,New device ,Electric current ,business ,Realization (systems) ,Quantum well ,Excitation - Abstract
We propose a novel physical mechanism for the excitation of optical nanoantenna which utilizes the dissipative instability of DC electric current in the quantum well. Realization of this approach in nanoplasmonics can lead to a new device - nanoresotron.
- Published
- 2016
- Full Text
- View/download PDF
43. Excitation of plasmonic nanoantennas by nonresonant and resonant electron tunnelling
- Author
-
Igor E. Protsenko, I. V. Smetanin, Alexandre Bouhelier, Alexander V. Uskov, and Jacob B. Khurgin
- Subjects
Orders of magnitude (temperature) ,FOS: Physical sciences ,Physics::Optics ,02 engineering and technology ,Electron ,01 natural sciences ,0103 physical sciences ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,Physics::Atomic and Molecular Clusters ,General Materials Science ,010306 general physics ,Quantum tunnelling ,Plasmon ,Common emitter ,Physics ,Condensed Matter - Mesoscale and Nanoscale Physics ,business.industry ,Surface plasmon ,021001 nanoscience & nanotechnology ,Surface plasmon polariton ,3. Good health ,Optoelectronics ,0210 nano-technology ,business ,Excitation ,Optics (physics.optics) ,Physics - Optics - Abstract
A rigorous theory of photon emission accompanied inelastic tunnelling inside the gap of plasmonic nanoantennas has been developed. The disappointingly low efficiency of the electrical excitation of surface plasmon polaritons in these structures can be increased by orders of magnitude when a resonant tunnelling structure is incorporated inside the gap. Resonant tunnelling assisted surface plasmon emitter may become a key element in future electrically-driven nanoplasmonic circuits., 7 pages, 6 figures
- Published
- 2016
44. Energy-resolved hot carrier relaxation dynamics in monocrystalline plasmonic nanoantennas
- Author
-
Marlène Petit, Olivier Demichel, Alexandre Bouhelier, Régis Méjard, Anthonin Verdy, and Benoit Cluzel
- Subjects
Materials science ,Photoluminescence ,FOS: Physical sciences ,Physics::Optics ,02 engineering and technology ,01 natural sciences ,Monocrystalline silicon ,symbols.namesake ,Condensed Matter::Materials Science ,0103 physical sciences ,Electrical and Electronic Engineering ,010306 general physics ,Plasmon ,business.industry ,Fermi level ,021001 nanoscience & nanotechnology ,Atomic and Molecular Physics, and Optics ,Electronic, Optical and Magnetic Materials ,Picosecond ,symbols ,Relaxation (physics) ,Optoelectronics ,0210 nano-technology ,Luminescence ,business ,Ultrashort pulse ,Optics (physics.optics) ,Biotechnology ,Physics - Optics - Abstract
Hot carriers are energetic photo-excited carriers driving a large range of chemico-physical mechanisms. At the nanoscale, an efficient generation of these carriers is facilitated by illuminating plasmonic antennas. However, the ultrafast relaxation rate severally impedes their deployment in future hot-carrier based devices. In this paper, we report on the picosecond relaxation dynamics of hot carriers in plasmonic monocrystalline gold nanoantennas. The temporal dynamics of the hot carriers is experimentally investigated by interrogating the nonlinear photoluminescence response of the antenna with a spectrally-resolved two-pulse correlation configuration. We measure time-dependent nonlinearity orders varying from 1 to 8, which challenge the common interpretation of multi-photon gold luminescence. We demonstrate that the relaxation of the photo-excited carriers depends of their energies relative to the Fermi level. We find a 60 % variation in the relaxation rate for electron-hole pair energies ranging from c.a. 0.2 to 1.8 eV. The quantitative relationship between hot carrier energy and relaxation dynamics is an important finding for optimizing hot carriers-assisted processes and shed new light in the intricacy of nonlinear photoluminescence in plasmonic structures.
- Published
- 2016
45. Metal mesoscopic contact as a source of plasmons for plasmonic nanocircuitries
- Author
-
Alexandre Bouhelier, Igor V. Smetanin, Jacob B. Khurgin, M. Buret, Alexander V. Uskov, and Igor E. Protsenko
- Subjects
Mesoscopic physics ,Materials science ,Physics::Optics ,Nanotechnology ,02 engineering and technology ,Integrated circuit ,Electron ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,021001 nanoscience & nanotechnology ,01 natural sciences ,law.invention ,Metal ,Computer Science::Emerging Technologies ,law ,visual_art ,0103 physical sciences ,visual_art.visual_art_medium ,Stimulated emission ,010306 general physics ,0210 nano-technology ,Nanoscopic scale ,Computer Science::Databases ,Quantum tunnelling ,Plasmon - Abstract
We show that nanoscale metal contacts (constrictions) can serve as an efficient sources of plasmons for future nanoplasmonic integrated circuits. Electron, passing ballistically through nanoscale contact, can emit plasmons with the probability ∼0.1 due to multiple collisions with walls of the constriction.
- Published
- 2016
- Full Text
- View/download PDF
46. Sorting of Single Biomolecules based on Fourier Polar Representation of Surface Enhanced Raman Spectra
- Author
-
Alexandre Bouhelier, Eric Finot, Gérard Colas des Francs, M. Buret, Alain Dereux, Aymeric Leray, and Thibault Brulé
- Subjects
Computer science ,02 engineering and technology ,Biosensing Techniques ,computer.software_genre ,Spectrum Analysis, Raman ,01 natural sciences ,Spectral line ,Article ,symbols.namesake ,Cysteine ,Spectroscopy ,Representation (mathematics) ,Sine and cosine transforms ,Multidisciplinary ,010401 analytical chemistry ,Sorting ,Models, Theoretical ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Fourier transform ,Principal component analysis ,Odorants ,symbols ,Polar ,Data mining ,0210 nano-technology ,Raman spectroscopy ,Biological system ,computer ,Monte Carlo Method ,Raman scattering ,Algorithms - Abstract
Surface enhanced Raman scattering (SERS) spectroscopy becomes increasingly used in biosensors for its capacity to detect and identify single molecules. In practice, a large number of SERS spectra are acquired and reliable ranking methods are thus essential for analysing all these data. Supervised classification strategies, which are the most effective methods, are usually applied but they require pre-determined models or classes. In this work, we propose to sort SERS spectra in unknown groups with an alternative strategy called Fourier polar representation. This non-fitting method based on simple Fourier sine and cosine transforms produces a fast and graphical representation for sorting SERS spectra with quantitative information. The reliability of this method was first investigated theoretically and numerically. Then, its performances were tested on two concrete biological examples: first with single amino-acid molecule (cysteine) and then with a mixture of three distinct odorous molecules. The benefits of this Fourier polar representation were highlighted and compared to the well-established statistical principal component analysis method.
- Published
- 2016
- Full Text
- View/download PDF
47. Reversible Strong Coupling in Silver Nanoparticle Arrays Using Photochromic Molecules
- Author
-
Alexandre Bouhelier, Alessandro Veltri, Renaud Bachelot, Pierre-Michel Adam, Anne-Laure Baudrion, Antoine Perron, Laboratoire de Nanotechnologie et d'Instrumentation Optique (LNIO), Institut Charles Delaunay (ICD), Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS)-Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS), Università della Calabria [Arcavacata di Rende] (Unical), Laboratoire Interdisciplinaire Carnot de Bourgogne [Dijon] (LICB), Université de Bourgogne (UB)-Université de Technologie de Belfort-Montbeliard (UTBM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), and Université de Technologie de Belfort-Montbeliard (UTBM)-Université de Bourgogne (UB)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
exciton−plasmon coupling ,Plasmon ,Bioengineering ,02 engineering and technology ,010402 general chemistry ,Photochemistry ,01 natural sciences ,Silver nanoparticle ,Photochromism ,chemistry.chemical_compound ,active plasmonics ,General Materials Science ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Surface plasmon resonance ,Rabi splitting ,Spiropyran ,Chemistry ,Mechanical Engineering ,Resonance ,General Chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,spiropyran ,0104 chemical sciences ,Chemical physics ,Excited state ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,0210 nano-technology ,Localized surface plasmon - Abstract
International audience; In this Letter, we demonstrate a reversible strong coupling regime between a dipolar surface plasmon resonance and a molecular excited state. This reversible state is experimentally observed on silver nanoparticle arrays embedded in a polymer film containing photochromic molecules. Extinction measurements reveal a clear Rabi splitting of 294 meV, corresponding to ∼13% of the molecular transition energy. We derived an analytical model to confirm our observations, and we emphasize the importance of spectrally matching the polymer absorption with the plasmonic resonance to observe coupled states. Finally, the reversibility of this coupling is illustrated by cycling the photochromic molecules between their two isomeric forms.
- Published
- 2012
- Full Text
- View/download PDF
48. Influence of the Number of Nanoparticles on the Enhancement Properties of Surface-Enhanced Raman Scattering Active Area: Sensitivity versus Repeatability
- Author
-
Georges Lévi, Jérémie Margueritat, Carmen Marco De Lucas, Eric Finot, Johan Grand, Hélène Gehan, Jean Aubard, Alexandre Bouhelier, Laurent Markey, Gérard Colas-des-Francs, Nordin Félidj, Alain Dereux, Interfaces, Traitements, Organisation et Dynamique des Systèmes (ITODYS (UMR_7086)), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), Laboratoire Interdisciplinaire Carnot de Bourgogne [Dijon] (LICB), Université de Technologie de Belfort-Montbeliard (UTBM)-Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS), Université Paris Diderot - Paris 7 (UPD7)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Interdisciplinaire Carnot de Bourgogne (LICB), and Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Light ,Macromolecular Substances ,Surface Properties ,Molecular Conformation ,General Physics and Astronomy ,Nanoparticle ,Nanotechnology ,02 engineering and technology ,Spectrum Analysis, Raman ,010402 general chemistry ,01 natural sciences ,symbols.namesake ,Materials Testing ,Scattering, Radiation ,General Materials Science ,Sensitivity (control systems) ,Particle Size ,Surface plasmon resonance ,ComputingMilieux_MISCELLANEOUS ,[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,General Engineering ,021001 nanoscience & nanotechnology ,Nanostructures ,0104 chemical sciences ,Colloidal gold ,symbols ,Surface modification ,Crystallization ,0210 nano-technology ,Electron-beam lithography ,Excitation ,Raman scattering - Abstract
In the present work, the combination of chemical immobilization with electron beam lithography enables the production of sensitive and reproducible SERS-active areas composed of stochastic arrangements of gold nanoparticles. The number of nanoparticles was varied from 2 to 500. Thereby a systematic analysis of these SERS-active areas allows us to study SERS efficiency as a function of the number of nanoparticles. We found that the experimental parameters are critical, in particular the size of the SERS-active area must be comparable to the effective area of excitation to obtained reproducible SERS measurements. The sensitivity has also been studied by deducing the number of NPs that generate the enhancement. With this approach we demonstrates that the maximum enhancement, the best sensitivity, is obtained with the smallest number of nanoparticles that is resonant at a given excitation wavelength.
- Published
- 2011
- Full Text
- View/download PDF
49. Off-Resonant Optical Excitation of Gold Nanorods: Nanoscale Imprint of Polarization Surface Charge Distribution
- Author
-
Xuan Zhou, Claire Deeb, Prashant K. Jain, Renaud Bachelot, Alexandre Bouhelier, Olivier Soppera, Davy Gérard, Pascal Royer, Jérôme Plain, Laboratoire de Nanotechnologie et d'Instrumentation Optique (LNIO), Institut Charles Delaunay (ICD), Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS)-Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Interdisciplinaire Carnot de Bourgogne (LICB), Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS), University of California, Photomatériaux pour l'Optique et les Nanotechnologies (PHOTON LRC 7228), Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA)), Laboratoire de Nanotechnologie et d'Instrumentation Optique ( LNIO ), Institut Charles Delaunay ( ICD ), Université de Technologie de Troyes ( UTT ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Technologie de Troyes ( UTT ) -Centre National de la Recherche Scientifique ( CNRS ), Department of Crop and Soil Sciences, PennState University [Pennsylvania] ( PSU ), Laboratoire Interdisciplinaire Carnot de Bourgogne ( LICB ), Université de Bourgogne ( UB ) -Centre National de la Recherche Scientifique ( CNRS ), Photomatériaux pour l'Optique et les Nanotechnologies ( PHOTON LRC 7228 ), Université de Haute-Alsace (UHA) Mulhouse - Colmar ( Université de Haute-Alsace (UHA) ), Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), University of California (UC), Institut de Science des Matériaux de Mulhouse (IS2M), Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, and Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,surface charge density ,Analytical chemistry ,Physics::Optics ,02 engineering and technology ,Dielectric ,010402 general chemistry ,01 natural sciences ,plasmonics ,polymer cross-linking ,Electric field ,optical properties of metal nanoparticles ,General Materials Science ,Surface charge ,Physical and Theoretical Chemistry ,Polarization (electrochemistry) ,ComputingMilieux_MISCELLANEOUS ,Plasmon ,business.industry ,Charge density ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,[ CHIM.POLY ] Chemical Sciences/Polymers ,[CHIM.POLY]Chemical Sciences/Polymers ,[ CHIM.MATE ] Chemical Sciences/Material chemistry ,polymerization ,Optoelectronics ,Nanorod ,nanorods ,0210 nano-technology ,business ,Excitation - Abstract
International audience; We report on the nanoscale optical characterization of gold nanorods irradiated out of their plasmonic resonance. Our approach is based on the reticulation of a photopolymerizable formulation locally triggered by enhanced electromagnetic fields. The tiny local field enhancement stems from the surface polarization charges associated with the electric field discontinuity at the metal/dielectric interface. This allows us to get a nanoscale signature of the spatial distribution of the surface charge density in metallic nanoparticles irradiated off-resonance.
- Published
- 2010
- Full Text
- View/download PDF
50. Ultrafast hybrid plasmonics
- Author
-
Gary P. Wiederrecht, Alexandre Bouhelier, and Gregory A. Wurtz
- Subjects
Physics ,business.industry ,Physics::Optics ,General Physics and Astronomy ,Dissipation ,Planar ,Coherent control ,Excited state ,Physics::Atomic and Molecular Clusters ,Optoelectronics ,Physical and Theoretical Chemistry ,Atomic physics ,business ,Ultrashort pulse ,Excitation ,Plasmon ,Coherence (physics) - Abstract
We review our recent studies of electromagnetic coupling and associated temporal dynamics of molecular excitations with plasmonic resonances supported by either localized or extended planar geometries. We focus on coherent interactions between plasmon resonances and molecular excitations, which are experimentally challenging due to the very short (∼10–100 fs) coherence times of plasmons. Recent experimental results and theoretical analysis for observing and controlling coherences between molecular excitations and plasmonic polarizations are shown. Advances will explore new directions in ultrafast coherent control of molecular excited states and energy dissipation processes, as well as ultrafast addressing and switching in plasmonics-based circuit architectures.
- Published
- 2008
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.