1. Assessing the Ubiquity of Bloch Domain Walls in Ferroelectric Lead Titanate Superlattices
- Author
-
Edoardo Zatterin, Petr Ondrejkovic, Louis Bastogne, Céline Lichtensteiger, Ludovica Tovaglieri, Daniel A. Chaney, Alireza Sasani, Tobias Schülli, Alexei Bosak, Steven Leake, Pavlo Zubko, Philippe Ghosez, Jirka Hlinka, Jean-Marc Triscone, and Marios Hadjimichael
- Subjects
Physics ,QC1-999 - Abstract
The observation of unexpected polarization textures such as vortices, skyrmions, and merons in various oxide heterostructures has challenged the widely accepted picture of ferroelectric domain walls as being Ising-like. Bloch components in the 180° domain walls of PbTiO_{3} have recently been reported in PbTiO_{3}/SrTiO_{3} superlattices and linked to domain wall chirality. While this opens exciting perspectives, the ubiquity of this Bloch component remains to be further explored. In this work, we present a comprehensive investigation of domain walls in PbTiO_{3}/SrTiO_{3} superlattices, involving a combination of first- and second-principles calculations, phase-field simulations, diffuse scattering calculations, and synchrotron-based diffuse x-ray scattering. Our theoretical calculations highlight that the previously predicted Bloch polarization in the 180° domain walls in PbTiO_{3}/SrTiO_{3} superlattices might be more sensitive to the boundary conditions than initially thought and is not always expected to appear. Employing diffuse scattering calculations for larger systems, we develop a method to probe the complex structure of domain walls in these superlattices via diffuse x-ray scattering measurements. Through this approach, we investigate depolarization-driven ferroelectric polarization rotation at the domain walls. Our experimental findings, consistent with our theoretical predictions for realistic domain periods, do not reveal any signatures of a Bloch component in the centers of the 180° domain walls of PbTiO_{3}/SrTiO_{3} superlattices, suggesting that the precise nature of domain walls in the ultrathin PbTiO_{3} layers is more intricate than previously thought and deserves further attention.
- Published
- 2024
- Full Text
- View/download PDF