1. Systematic discrepancies between reference methods for non-covalent interactions within the S66 dataset
- Author
-
Shi, Benjamin X., Della Pia, Flaviano, Al-Hamdani, Yasmine S., Michaelides, Angelos, Alfè, Dario, and Zen, Andrea
- Subjects
Physics - Chemical Physics ,Quantum Physics - Abstract
The accurate treatment of non-covalent interactions is necessary to model a wide range of applications, from molecular crystals to surface catalysts to aqueous solutions and many more. Quantum diffusion Monte Carlo (DMC) and coupled cluster theory with single, double and perturbative triple excitations [CCSD(T)] are considered two widely-trusted methods for treating non-covalent interactions. However, while they have been well-validated for small molecules, recent work has indicated that these two methods can disagree by more than $7.5\,$kcal/mol for larger systems. The origin of this discrepancy remains unknown. Moreover, the lack of systematic comparisons, particularly for medium-sized complexes, has made it difficult to identify which systems may be prone to such disagreements and the potential scale of these differences. In this work, we leverage the latest developments in DMC to compute interaction energies for the entire S66 dataset, containing 66 medium-sized complexes with a balanced representation of dispersion and electrostatic interactions. Comparison to previous CCSD(T) references reveals systematic trends, with DMC predicting stronger binding than CCSD(T) for electrostatic-dominated systems, while the binding becomes weaker for dispersion-dominated systems. We show that the relative strength of this discrepancy is correlated to the ratio of electrostatic and dispersion interactions, as obtained from energy decomposition analysis methods. Finally, we pinpoint systems in the S66 dataset where these discrepancies are particularly prominent, offering cost-effective benchmarks to guide future developments in DMC, CCSD(T) as well as the wider electronic structure theory community.
- Published
- 2024