Dinoflagellates are photosynthetic protists commonly distributed in marine and freshwater environments and can be found in symbiotic associations. They are a significant primary producer and play a fundamental role in the functioning of aquatic ecosystems – especially for coral reefs. Dinoflagellates can produce a wide variety of secondary metabolites, and their toxins can affect fish, birds and mammals. In recent years these toxins have been found to have potential cytotoxic, anticancer, antibiotics, antifungals activities. This mini review covers the main genera of dinoflagellates, and challenges and advances in their cultivation in addition to prospects for development of dinoflagellates-based products., This study was financed in part by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil - Finance Code 001 and AOG is thankful to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (PQ 308063/2019-8)., {"references":["Anderson, D.M., Alpermann, T.J., Cembella, A.D., Collos, Y., Masseret, E. & Montresor, M. (2012). The globally distributed genus Alexandrium: multifaceted roles in marine ecosystems and impacts on human health. Harmful Algae 14: 10-35.","Bachvaroff, T.R., Adolf, J.E., Place & A.R. (2009). Strain variation in Karlodinium veneficum (Dinophyceae): toxin profiles, pigments, and growth characteristics. Journal of Phycology 45: 137-153.","Balech, E. (1989). Redescription of Alexandrium minutum Halim (Dinophyceae) type species of the genus Alexandrium. Phycologia 28(2): 206-211.","Band-Schmidt, C. J., Rojas-Posadas, D. I., Morquecho, L. & HernándezSaavedra, N. Y. (2008). Heterogeneity of LSU rDNA sequences and morphology of Gymnodinium catenatum dinoflagellate strains in Bahía Concepción, Gulf of California, Mexico. Journal of Plankton Research 30(7): 755-763.","Band-Schmidt, C.J., Bustillos-Guzmán, J.J., Hernández-Sandoval, F.E., Núñez-Vázquez, E.J. & López-Cortés, D. J. (2014). Effect of temperature on growth and paralytic toxin profiles in isolates of Gymnodinium catenatum (Dinophyceae) from the Pacific coast of Mexico. Toxicon 90: 199-212.","Barros, M. P., Pinto, E., Colepicolo, P. & Pedersén, M. (2001). Astaxanthin and peridinin inhibit oxidative damage in Fe2+-loaded liposomes: scavenging oxyradicals or changing membrane permeability? Biochemical and Biophysical Research Communications 288(1): 225-232.","Ben-Amotz, A. (2004). Industrial production of microalgal cell-mass and secondary products-major industrial species. In: Handbook of Microalgal Culture: Biotechnology and applied phycology. Blackwell science Ltd, v. 273, p. 273-280.","Benstein, R.M., Çebi, Z., Podola, B. & Melkonian, M. (2014). Immobilized growth of the peridinin-producing marine dinoflagellate Symbiodinium in a simple biofilm photobioreactor. Marine Biotechnology 16(6): 621-628.","Bernasconi, R., Stat, M., Koenders, A. & Huggett, M.J. (2019). Global networks of Symbiodinium-bacteria within the coral holobiont. Microbial Ecology 77(3), 794-807.","Burkholder, J.M., Glibert, P.M. & Skeltona, H.M. (2008). Mixotrophy, a major mode of nutrition for harmful algal species in eutrophic waters. Harmful Algae 8, 77–93.","Carballo, C., Pinto, P. I. S., Mateus, A. P., Berbel, C., Guerreiro, C. C., Martinez-Blanch, J. F., Codoñer, F. M., Mantecon, L., Power, D. M. & Manchado, M. (2019). β-glucans and microalgal extracts modulate the immune response and gut microbiome in Senegalese sole (Solea senegalensis). Fish & Shellfish Immunology 92(9), 31-39.","Collos, Y., Jauzein, C., Ratmaya, W., Souchu, P., Abadie, E., & Vaquer, A. (2014). Comparing diatom and Alexandrium catenella/tamarense blooms in Thau lagoon: Importance of dissolved organic nitrogen in seasonally Nlimited systems. Harmful Algae 37, 84-91.","Cui, Y., Zhang, H. & Lin, S. (2017). Enhancement of non-photochemical quenching as an adaptive strategy under phosphorus deprivation in the dinoflagellate Karlodinium veneficum. Frontiers in Microbiology 8: 1-14.","Daroch, M., Geng, S. & Wang, G. (2013). Recent advances in liquid biofuel production from algal feedstocks. Applied Energy 102, 1371-1381.","Echigoya, R., Rhodes, L., Oshima, Y. & Satake, M. (2005). The structures of five new antifungal and hemolytic amphidinol analogs from Amphidinium carterae collected in New Zealand. Harmful Algae 4(2), 383-389.","Gallardo-Rodríguez, J., Sánchez-Mirón, A., García-Camacho, F., LópezRosales, L., Chisti, Y. & Molina-Grima, E. (2012). Bioactives from microalgal dinoflagellates. Biotechnology Advances 30(6), 1673-1684.","García-Camacho, F., Rodríguez, J.G., Mirón, A.S., García, M.C.C., Belarbi, E.H., Chisti, Y. & Grima, E.M. (2007). Biotechnological significance of toxic marine dinoflagellates. Biotechnology Advances 25, 176–194.","Garrido-Cardenas, J. A., Manzano-Agugliaro, F., Acien-Fernandez, F. G. & Molina-Grima, E. (2018). Microalgae research worldwide. Algal Research 35, 50-60.","González-Rodríguez, J.J., Sanches-Mirón, A., García-Camacho, F., García, M.C., Belarbi, E.H. & Molina-Grima, E. (2010). Culture of dinoflagellates in a fed-batch and continuous stirred-tank photobioreactors: Growth, oxidative stress and toxin production. Process Biochemistry 45(5), 660-666.","Gravinese, P. M., Kronstadt, S. M., Clemente, T., Cole, C., Blum, P., Henry, M. S., Pierce, R.H. & Lovko, V. J. (2018). The effects of red tide (Karenia brevis) on reflex impairment and mortality of sublegal Florida stone crabs, Menippe mercenaria. Marine Environmental Research 137, 145-148. G","Grégoire, V., Schmacka, F., Coffroth, M. A. & Karsten, U. (2017). Photophysiological and thermal tolerance of various genotypes of the coral endosymbiont Symbiodinium sp. (Dinophyceae). Journal of Applied Phycology 29(4), 1893-1905.","Hallegraeff, G. M., Blackburn, S. I., Doblin, M. A. & Bolch, C. J. S. (2012). Global toxicology, ecophysiology and population relationships of the chainforming PST dinoflagellate Gymnodinium catenatum. Harmful Algae 14, 130-143.","Hofmann, E., Wrench, P.M., Sharples, F.P., Hiller, R.G., Welte, W. & Diederichs, K. (1996). Structural basis of light harvesting by carotenoids: peridinin-chlorophyll-protein from Amphidinium carterae. Science 272(5269), 1788-1791.","Holmes, M.J., Bolch, C.J., Green, D.H., Cembella, A.D. & Teo, S.L.M. (2002). Singapore isolates of the dinoflagellate Gymnodinium catenatum (Dinophyceae) produce a unique profile of paralytic shellfish poisoning toxins 1. Journal of Phycology 38(1), 96-106","Huang, S.J., Kuo, C.M., Lin, Y.C., Chen, Y.M. & Lu, C.K. (2009). Carteraol E, a potent polyhydroxyl ichthyotoxin from the dinoflagellate Amphidinium carterae. Tetrahedron Letters 50(21), 2512-2515.","Iwamoto, M., Sumino, A., Shimada, E., Kinoshita, M., Matsumori, N. & Oiki, S. (2017). Channel formation and membrane deformation via sterolaided polymorphism of amphidinol 3. Scientific Reports 7(1), 1-10.","Jeong, H.J., Du Yoo, Y., Kim, J.S., Seong, K.A., Kang, N.S. & Kim, T.H. (2010). Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Science Journal 45(2), 65-91.","Jephcott, T.G., Sime-Ngando, T., Gleason, F.H. & Macarthur, D.J. (2016). Host–parasite interactions in food webs: diversity, stability, and coevolution. Food Webs 6, 1-8.","Krueger, T. & Gates, R. D. (2012). Cultivating endosymbionts—Host environmental mimics support the survival of Symbiodinium C15 ex hospite. Journal of Experimental Marine Biology and Ecology 413, 169- 176.","Lage, S., Costa, P.R., Moita, T., Eriksson, J., Rasmussen, U. & Rydberg, S.J. (2014). BMAA in shellfish from two Portuguese transitional water bodies suggests the marine dinoflagellate Gymnodinium catenatum as a potential BMAA source. Aquatic Toxicology 152, 131-138.","LaJeunesse, T.C., Parkinson, J.E, Gabrielson, P.W., Jeong, H.J., Reimer, J.D., Voolstra, C.R., Santos, S.R. (2018). Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Current Biology 28(16), 2570-2580.","Langenbach, D. & Melkonian, M. (2019). Optimising biomass and peridinin accumulation in the dinoflagellate Symbiodinium voratum using a twin-layer porous substrate bioreactor. Journal of Applied Phycology 31(1), 21-28.","Legrand, C. & Carlsson, P. (1998). Uptake of high molecular weight dextran by the dinoflagellate Alexandrium catenella. Aquatic Microbial Ecology 16(1), 81-86.","López-Rosales, L., García-Camacho, F., Sánchez-Mirón, A. & Chisti, Y. (2015). An optimal culture medium for growing Karlodinium veneficum: Progress towards a microalgal dinoflagellate-based bioprocess. Algal Research 10, 177-182.","López-Rosales, L., García-Camacho, F., Sánchez-Mirón, A., Beato, E. M., Chisti, Y., & Grima, E. M. (2016). Pilot-scale bubble column photobioreactor culture of a marine dinoflagellate microalga illuminated with light emission diodes. Bioresource Technology 216, 845-855.","López-Rosales, L., García-Camacho, F., Sánchez-Mirón, A., ContrerasGómez, A., & Molina-Grima, E. (2017). Modeling shear-sensitive dinoflagellate microalgae growth in bubble column photobioreactors. Bioresource Technology 245, 250-257.","Martínez, K.A., Lauritano, C., Druka, D., Romano, G., Grohmann, T., Jaspars, M., Martín, J., Díaz, C., Cautain, B., Cruz, M., Ianora, A. (2019). Amphidinol 22, a new cytotoxic and antifungal amphidinol from the dinoflagellate Amphidinium carterae. Marine Drugs 17(7), 385.","Martínez, T.D.C.C., Rodríguez, R.A., Voltolina, D. & Morquecho, L. (2016). Effectiveness of coagulants-flocculants for removing cells and toxins of Gymnodinium catenatum. Aquaculture 452, 188-193.","McIlroy, S.E., Gillette, P., Cunning, R., Klueter, A., Capo, T., Baker, A.C. & Coffroth, M.A. (2016). The effects of Symbiodinium (Pyrrhophyta) identity on growth, survivorship, and thermal tolerance of newly settled coral recruits. Journal of Phycology 52(6), 1114-1124.","Mendes, A., Reis-Vasconcelos, A., Guerra, R.P., da Silva, T.L. (2009). Crypthecodinium cohnii with phasison DHA production: A review. Journal of Applied Phycology 21, 199-214.","Molina-Miras, A., López-Rosales, L., Sánchez-Mirón, A., Cerón-García, M.C., Seoane-Parra, S., García-Camacho, F. & Molina-Grima, E. (2018). Longterm culture of the marine dinoflagellate microalga Amphidinium carterae in an indoor LED-lighted raceway photobioreactor: Production of carotenoids and fatty acids. Bioresource Technology 265, 257-267.","Molina-Miras, A., López-Rosales, L., Cerón-García, M. C., Sánchez-Mirón, A., Olivera-Gálvez, A., García-Camacho, F., & Molina-Grima, E. (2020). Acclimation of the microalga Amphidinium carterae to different nitrogen sources: potential application in the treatment of marine aquaculture effluents. Journal of Applied Phycology 32, 1075-1094.","Muller-Fuega, A. (2000). The role of microalgae in aquaculture: situation and trends. Journal of Applied Phycology 2(5), 527-534.","Naylor, R., Goldburg, R.J.,Mooney, H.,Beveridge, M.,Clay, J.,Folke, C.,Kautsky, N., Lubchenco, J., Primavera, J. & Williams, M. (1998). Nature's subsidies to shrimp and salmon farming. Science 282, 883–884.","Negri, A.P., Bolch, C.J.S., Blackburn, S.I., Dickman, M., Llewellyn, L.E., Méndez, S. (2001). Paralytic shellfish toxins in Gymnodinium catenatum strains from six countries. In: Hallegraeff, G.M., Blackburn, S.I., Bolch, C.J., Lewis, R.J. (Eds.), Harmful Algal Blooms 2000. Intergovernmental Oceanographic Commission of UNESCO, Paris, pp. 210–213.","Nishino, H. (1998). Cancer prevention by carotenoids. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 402(1-2), 159-163.","Oh, S.J., Kwon, H.K., Noh, I.H. & Yang, H.S. (2010). Dissolved organic phosphorus utilization and alkaline phosphatase activity of the dinoflagellate Gymnodinium impudicum isolated from the South Sea of Korea. Ocean Science Journal 45(3), 171-178.","Oliveira, C.Y.B., Viegas, T.L., Lopes, R.G., Cella, H., Menezes, R.S., Soares, A.T., Antoniosi Filho, N. R. & Derner, R.B. (2020a). A comparison of harvesting and drying methodologies on fatty acids composition of the green microalga Scenedesmus obliquus. Biomass and Bioenergy 132, 105437.","Oliveira, C.Y.B., Lima, J., Oliveira, C.D.L., Lima, P.C., Gálvez, A.O., & Macedo Dantas, D. M. (2020b). Growth of Chlorella vulgaris using wastewater from Nile tilapia (Oreochromis niloticus) farming in a low-salinity biofloc system. Acta Scientiarum. Technology 42, e46232.","Panis, G. & Carreon, J.R. (2016). Commercial astaxanthin production derived by green alga Haematococcus pluvialis: A microalgae process model and a techno-economic assessment all through production line. Algal Research 18, 175-190.","Pan-Utai, W., Kahapana, W. & Iamtham, S. (2018). Extraction of Cphycocyanin from Arthrospira (Spirulina) and its thermal stability with citric acid. Journal of Applied Phycology 30(1), 231-242","Parker, N.S., Negri, A.P., Frampton, D.M.F., Rodolfi, L., Tredici, M.R. & Blackburn, S.I. (2002). Growth of the toxic dinoflagellate Alexandrium minutum (Dinophyceae) using high biomass culture systems. Journal of Applied Phycology 14(5), 313-324.","Place, A.R., Bowers, H,A., Bachvaroff, T.R., Adolf, J.E., Deeds, J.R. & Sheng, J. (2012). Karlodinium veneficum—The little dinoflagellate with a big bite. Harmful Algae 14, 179-195.","Proença, L.A.O., Tamanaha, M.S. & Souza, N.P. (2001). The toxic dinoflagellate Gymnodinium catenatum Graham in southern Brazilian waters: occurrence, pigments and toxins. Atlântica 23, 59-65","Salama, E., Kurade, M.B., Abou-Shanab, R.A., El-Dalatony, M.M., Yang, I.S., Min, B. & Joen, B.H. (2017). Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation. Renewable and Sustainable Energy Reviews 79, 1189-1211.","Saldarriaga, J.F. & Taylor, F.J.R. (2017). Dinoflagellata. Handbook of the Protists, 625-678.","Satake, M., Cornelio, K., Hanashima, S., Malabed, R., Murata, M., Matsumori, N., Zhang, H., Hayashi, F., Mori, S., Kim, J.S., Kim, C. H. & Lee, J.S. (2017). Structures of the largest amphidinol homologues from the dinoflagellate Amphidinium carterae and structure–cctivity relationships. Journal of Natural Products 80(11), 2883-2888","Spatharis, S., Danielidis, D.B. & Tsirtsis, G. (2007). Recurrent Pseudonitzschia calliantha (Bacillariophyceae) and Alexandrium insuetum (Dinophyceae) winter blooms induced by agricultural runoff. Harmful Algae 6, 811-822.","Steidinger, K. & Janger, K. (1996). Identifying marine diatoms and dinoflagellates. In: Tomas, C.R. Dinoflagellates. vol. 2, Academic press, New York, p.606.","Suggett, D.J., Warner, M.E. & Leggat, W. (2017). Symbiotic dinoflagellate functional diversity mediates coral survival under ecological crisis. Trends in Ecology & Evolution 32(10), 735-745.","Touzet, N., Franco, J.M. & Raine, R. (2008). Morphogenetic diversity and biotoxin composition of Alexandrium (Dinophyceae) in Irish coastal waters. Harmful Algae 7(6), 782-797.","Tsirigoti, A., Tzovenis, I., Koutsaviti, A., Economou-Amilli, A., Ioannou, E. & Melkonian, M. (2020). Biofilm cultivation of marine dinoflagellates under different temperatures and nitrogen regimes enhances DHA productivity. Journal of Applied Phycology 1-16.","Wang, D.Z. & Hsieh, D.P. (2002). Effects of nitrate and phosphate on growth and C2 toxin productivity of Alexandrium tamarense CI01 in culture. Marine Pollution Bulletin 45(1-12), 286-289.","Waters, A.L., Hill, R.T., Place, A.R. & Hamann, M.T. (2010). The expanding role of marine microbes in pharmaceutical development. Current Opinion in Biotechnology 21, 780–786.","Zeller, M.A., Hunt, R., Jones, A. & Sharma, S. (2013). Bioplastics and their thermoplastic blends from Spirulina and Chlorella microalgae. Journal of Applied Polymer Science. v. 130, p. 3263– 3275."]}