10 results on '"Amélie Sarrazin"'
Search Results
2. The mouse HP1 proteins are essential for preventing liver tumorigenesis
- Author
-
Marine Pratlong, Eric Fabbrizio, Lakdhar Khellaf, Nelly Pirot, Amélie Sarrazin, Damien Grégoire, Yannick Perez, Shefqet Hajdari, Jean-Yohan Noël, Eric Julien, Nehmé Saksouk, Aliki Zavoriti, Florence Cammas, Céline Graber, Célia Barrachina, Institut de Recherche en Cancérologie de Montpellier (IRCM - U1194 Inserm - UM), and CRLCC Val d'Aurelle - Paul Lamarque-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)
- Subjects
0301 basic medicine ,endocrine system ,Cancer Research ,animal structures ,Euchromatin ,Liver cytology ,[SDV]Life Sciences [q-bio] ,[SHS.ANTHRO-BIO]Humanities and Social Sciences/Biological anthropology ,Endogenous retrovirus ,Biology ,liver ,transcriptional silencing ,03 medical and health sciences ,0302 clinical medicine ,endogenous retrovirus ,Genetics ,cancer ,Heterochromatin organization ,Molecular Biology ,Regulation of gene expression ,HP1 ,Cell biology ,Chromatin ,030104 developmental biology ,030220 oncology & carcinogenesis ,embryonic structures ,chromatin ,Heterochromatin protein 1 ,Corepressor - Abstract
International audience; Chromatin organization is essential for appropriate interpretation of the genetic information. Here, we demonstrated that the chromatin associated proteins HP1 are dispensable for hepatocytes survival but are essential within hepatocytes to prevent liver tumor development in mice with HP1β being pivotal in these functions. Yet, we found that the loss of HP1 per se is not sufficient to induce cell transformation but renders cells more resistant to specific stress such as the expression of oncogenes and thus in fine, more prone to cell transformation. Molecular characterization of HP1-Triple KO pre-malignant livers and BMEL cells revealed that HP1 are essential for the maintenance of heterochromatin organization and for the regulation of specific genes with most of them having well characterized functions in liver functions and homeostasis. We further showed that some specific retrotransposons get reactivated upon loss of HP1, correlating with over-expression of genes in their neighborhood. Interestingly, we found that, although HP1-dependent genes are characterized by enrichment H3K9me3, this mark does not require HP1 for its maintenance and is not sufficient to maintain gene repression in absence of HP1. Finally, we demonstrated that the loss of TRIM28 association with HP1 recapitulated several phenotypes induced by the loss of HP1 including the reactivation of some retrotransposons and the increased incidence of liver cancer development. Altogether, our findings indicate that HP1 proteins act as guardians of liver homeostasis to prevent tumor development by modulating multiple chromatin-associated events within both the heterochromatic and euchromatic compartments, partly through regulation of the corepressor TRIM28 activity.
- Published
- 2020
- Full Text
- View/download PDF
3. Universal highly efficient conditional knockout system in Leishmania , with a focus on untranscribed region preservation
- Author
-
Laurence Berry, Michèle Lefebvre, Lucien Crobu, Amélie Sarrazin, Nada Kuk, Yvon Sterkers, Patrick Bastien, Akila Yagoubat, Maladies infectieuses et vecteurs : écologie, génétique, évolution et contrôle (MIVEGEC), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud]), LPHI - Laboratory of Pathogen Host Interactions (LPHI), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Biologie, Génétique et Pathologie des Pathogènes Eucaryotes (MIVEGEC-BioGEPPE), Pathogènes, Environnement, Santé Humaine (EPATH), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Maladies infectieuses et vecteurs : écologie, génétique, évolution et contrôle (MIVEGEC), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud]), BioCampus Montpellier (BCM), Université Montpellier 1 (UM1)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Laboratory of Pathogen Host Interactions [Montpellier] (LPHI), BioCampus (BCM), and Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Immunology ,Cre recombinase ,trypanosomatids ,Computational biology ,Transfection ,Microbiology ,Leishmania mexicana ,Cell Line ,03 medical and health sciences ,Gene Knockout Techniques ,Virology ,Recombinase ,CRISPR ,[SDV.MP.PAR]Life Sciences [q-bio]/Microbiology and Parasitology/Parasitology ,Gene ,Polymerase ,030304 developmental biology ,Gene Editing ,Leishmania ,Recombination, Genetic ,0303 health sciences ,biology ,Integrases ,030306 microbiology ,Cas9 ,CreLox ,Proto-Oncogene Proteins c-crk ,biology.organism_classification ,genomic DNA ,inducible knockout ,parasite ,biology.protein ,CRISPR-Cas Systems ,CRISPR-Cas9 ,genome edition - Abstract
International audience; Trypanosomatids are divergent eukaryotes of high medical and economical relevance. Their biology exhibits original features that remain poorly understood; particularly, Leishmania is known for its high degree of genomic plasticity that makes genomic manipulation challenging. CRISPR-Cas9 has been applied successfully to these parasites providing a robust tool to study non-essential gene functions. Here, we have developed a versatile inducible system combining Di-Cre recombinase and CRISPR-Cas9 advantages. Cas9 is used to integrate the LoxP sequences, and the Cre-recombinase catalyses the recombination between LoxP sites, thereby excising the target gene. We used a Leishmania mexicana cell line expressing Di-Cre, Cas9, and T7 polymerase and then transfected donor DNAs and single guide RNAs as polymerase chain reaction (PCR) products. Because the location of LoxP sequences in the genomic DNA can interfere with the function and localisation of certain proteins of interest, we proposed to target the least transcribed regions upstream and/or downstream the gene of interest. To do so, we developed "universal" template plasmids for donor DNA cassettes with or without a tag, where LoxP sequences may be located either immediately upstream the ATG and downstream the stop codon of the gene of interest, or in the least transcribed areas of intergenic regions. Our methodology is fast, PCR-based (molecular cloning-free), highly efficient, versatile, and able to overcome the problems posed by genomic plasticity in Leishmania.
- Published
- 2020
- Full Text
- View/download PDF
4. SAMHD1 acts at stalled replication forks to prevent interferon induction
- Author
-
Yea-Lih Lin, Vincenzo Costanzo, Karina Zadorozhny, Anne-Lyne Schmitz, Flavie Coquel, Alexandra Cribier, Maria Joao Silva, Philippe Pasero, Bernard S. Lopez, Hervé Técher, Clément Mettling, Amélie Sarrazin, Antoine Barthe, Andrei Chabes, Elodie Dardillac, Jadwiga Nieminuszczy, Monsef Benkirane, Alexy Promonet, L. Krejci, Wojciech Niedzwiedz, Sushma Sharma, Institut de génétique humaine (IGH), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Intégrité du génome et cancers (IGC), Institut Gustave Roussy (IGR)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), BioCampus Montpellier (BCM), Université Montpellier 1 (UM1)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Institut Gustave Roussy (IGR), Institut de théorie des phénomènes physiques (EPFL), and Ecole Polytechnique Fédérale de Lausanne (EPFL)
- Subjects
0106 biological sciences ,0301 basic medicine ,[SDV]Life Sciences [q-bio] ,Cell- och molekylärbiologi ,[SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiology ,[SDV.CAN]Life Sciences [q-bio]/Cancer ,Biology ,01 natural sciences ,Molecular biology ,3. Good health ,03 medical and health sciences ,030104 developmental biology ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,ComputingMilieux_MISCELLANEOUS ,Cell and Molecular Biology ,010606 plant biology & botany - Abstract
International audience; DNA replication is an extremely complex process, involving thousands of replication forks progressing along chromosomes. These forks are requently slowed down or stopped by various obstacles, such as secondary DNA structures, chromatin-acting proteins or a lack of nucleotides. Thisslowing down, known as replicative stress, plays a central role in tumour development. Complex processes, which are not yet fully understood, are set up to respond to this stress. Certain nucleases, such as MRE11 and DNA2, degrade the neo-replicated DNA at the level of blocked forks, allowing the replication to restart. The interferon pathway is a defense mechanism against pathogens that detects the presence of foreign nucleic acids in the cytoplasm and activates the innate immune response. DNA fragments resulting from genomic DNA metabolism (repair, retrotransposition) can diffuse into the cytoplasm and activate this pathway. A pathological manifestation of this process is the Aicardi-Goutières syndrome, a rare disease characterized by chronic inflammation leading to neurodegenerative and developmental problems. In this encephalopathy, it has been suggested that DNA replication may generate cytosolic DNA fragments, but the mechanisms involved have not beencharacterized. SAMHD1 is frequently mutated in the Aicardi-Goutières syndrome as well as in some cancers, but its role in the etiology of these diseases was largely unknown. We show that cytosolic DNA accumulates in SAMHD1-deficient cells, particularly in the presence of replicative stress, activating the interferon response. SAMHD1 is important for DNA replication under normal conditions and for the processing of stopped forks, independent of its dNTPase activity. In addition, SAMHD1 stimulates the exonuclease activity of MRE11 in vitro. When SAMHD1 is absent, degradation of neosynthesized DNA is inhibited, which prevents activation of the replication checkpoint and leads to failure to restart the replication forks. Resection of the replication forks is performed by an alternative mechanism which releases DNA fragments into the cytosol, activating the interferon response. The results obtained show, for the first time, a direct link between the response to replication stress and the production of interferons. These results have important implications for our understanding of the Aicardi-Goutières syndrome and cancers related to SAMHD1. For example, we have shown that MRE11 and RECQ1 are responsible for the production of DNA fragments that trigger the inflammatory response in cells deficient for SAMHD1. We can therefore imagine that blocking the activity of these enzymes could decrease the production of DNA fragments and, ultimately, the activation of innate immunity in these cells. In addition, the interferon pathway plays an essential role in the therapeutic efficacy of irradiation and certain chemotherapeutic agents such as oxaliplatin. Modulating this response could therefore be of much wider interest in anti-tumour therapy; La réplication de l’ADN est un processus extrêmement complexe, impliquant des milliers de fourches de réplication progressant le long des chromosomes. Ces fourches sont fréquemment ralenties ou arrêtées par différents obstacles, tels que des structures secondaires de l’ADN, des protéines agissant sur la chromatine ou encore un manque de nucléotides. Ce ralentissement, qualifié de stress réplicatif, joue un rôle central dans le développement tumoral. Des processus complexes, qui ne sont pas encore totalement connus, sont mis en place pour répondre à ce stress. Certaines nucléases, comme MRE11 et DNA2, dégradent l’ADN néorépliqué au niveau des fourches bloquées, ce qui permet le redémarrage des réplisomes. La voie interféron est un mécanisme de défense contre les agents pathogènes qui détecte la présence d’acides nucléiques étrangers dans le cytoplasme et active la réponse immunitaire innée. Des fragments d’ADN issus du métabolisme de l’ADN génomique (réparation, rétrotransposition) peuvent diffuser dans le cytoplasme et activer cette voie. Une manifestation pathologique de ce processus est le syndrome d’Aicardi-Goutières, une maladie rare caractérisée par une inflammation chronique générant des problèmes neurodégénératifs et développementaux. Dans le cadre de cette encéphalopathie, il a été suggéré que la réplication de l’ADN pouvait générer des fragments d’ADN cytosoliques, mais les mécanismes impliqués n’avaient pas été caractérisés. SAMHD1 est fréquemment muté dans le syndrome d’Aicardi-Goutières ainsi que dans certains cancers, mais son rôle dans l’étiologie de ces maladies était jusqu’à présent largement inconnu. Nous montrons que de l’ADN cytosolique s’accumule dans les cellules déficientes pour SAMHD1, particulièrement en présence de stress réplicatif, activant la réponse interféron. Par ailleurs, SAMHD1 est important pour la réplication de l’ADN en conditions normales et pour le processing des fourches arrêtées, indépendamment de son activité dNTPase. De plus, SAMHD1 stimule l’activité exonucléase de MRE11 in vitro. Lorsque SAMHD1 est absent, la dégradation de l’ADN néosynthétisé est inhibée, ce qui empêche l’activation du checkpoint de réplication et entraine un défaut de redémarrage des fourches de réplication. De plus, la résection des fourches de réplication est réalisée par un mécanisme alternatif qui libère des fragments d’ADN dans le cytosol, activant la réponse interféron. Les résultats obtenus montrent, pour la première fois, un lien direct entre la réponse au stress réplicatif et la production d’interférons. Ces résultats ont des conséquences importantes dans notre compréhension du syndrome d’Aicardi Goutières et des cancers liés à SAMHD1. Par exemple, nous avons démontré que MRE11 et RECQ1 sont responsables de la production des fragments d’ADN qui déclenchent la réponse inflammatoire dans les cellules déficientes pour SAMHD1. Nous pouvons donc imaginer que bloquer l’activité de ces enzymes pourrait diminuer la production des fragments d’ADN et, in fine, l’activation de l’immunité innée dans ces cellules. Par ailleurs, la voie interférons joue un rôle essentiel dans l’efficacité thérapeutique de l’irradiation et de certains agents chimiothérapiques comme l’oxaliplatine. Moduler cette réponse pourrait donc avoir un intérêt beaucoup plus large en thérapie anti-tumorale
- Published
- 2020
- Full Text
- View/download PDF
5. The mouse HP1 proteins are essential for preventing liver tumorigenesis
- Author
-
Nehmé, Saksouk, Shefqet, Hajdari, Yannick, Perez, Marine, Pratlong, Célia, Barrachina, Céline, Graber, Damien, Grégoire, Aliki, Zavoriti, Amélie, Sarrazin, Nelly, Pirot, Jean-Yohan, Noël, Lakhdar, Khellaf, Eric, Fabbrizio, Eric, Julien, and Florence M, Cammas
- Subjects
Male ,Mice, Knockout ,Retroelements ,Chromosomal Proteins, Non-Histone ,Liver Neoplasms ,Tripartite Motif-Containing Protein 28 ,Cell Line ,Gene Expression Regulation, Neoplastic ,Disease Models, Animal ,Mice ,Cell Transformation, Neoplastic ,Liver ,Chromobox Protein Homolog 5 ,Heterochromatin ,Hepatocytes ,Animals ,Humans ,Female ,RNA-Seq ,Protein Binding - Abstract
Chromatin organization is essential for appropriate interpretation of the genetic information. Here, we demonstrated that the chromatin-associated proteins HP1 are dispensable for hepatocytes survival but are essential within hepatocytes to prevent liver tumor development in mice with HP1β being pivotal in these functions. Yet, we found that the loss of HP1 per se is not sufficient to induce cell transformation but renders cells more resistant to specific stress such as the expression of oncogenes and thus in fine, more prone to cell transformation. Molecular characterization of HP1-Triple KO premalignant livers and BMEL cells revealed that HP1 are essential for the maintenance of heterochromatin organization and for the regulation of specific genes with most of them having well characterized functions in liver functions and homeostasis. We further showed that some specific retrotransposons get reactivated upon loss of HP1, correlating with overexpression of genes in their neighborhood. Interestingly, we found that, although HP1-dependent genes are characterized by enrichment H3K9me3, this mark does not require HP1 for its maintenance and is not sufficient to maintain gene repression in absence of HP1. Finally, we demonstrated that the loss of TRIM28 association with HP1 recapitulated several phenotypes induced by the loss of HP1 including the reactivation of some retrotransposons and the increased incidence of liver cancer development. Altogether, our findings indicate that HP1 proteins act as guardians of liver homeostasis to prevent tumor development by modulating multiple chromatin-associated events within both the heterochromatic and euchromatic compartments, partly through regulation of the corepressor TRIM28 activity.
- Published
- 2019
6. The mouse HP1 proteins are essential for preventing liver tumorigenesis
- Author
-
Jean-Yohan Noël, Aliki Zavoriti, Amélie Sarrazin, Shefqet Hajdari, Céline Graber, Eric Julien, Eric Fabbrizio, Célia Barrachina, Nelly Pirot, Nehmé Saksouk, Lakhdar Khellaf, Marine Pratlong, and Florence Cammas
- Subjects
endocrine system ,animal structures ,TRIM28 ,Euchromatin ,Heterochromatin ,Endoplasmic reticulum ,embryonic structures ,Heterochromatin protein 1 ,Steroid biosynthesis ,Biology ,Corepressor ,Chromatin ,Cell biology - Abstract
Chromatin organization is essential for appropriate interpretation of the genetic information. Here, we demonstrated that the chromatin associated proteins HP1 are dispensable for cell survival but are essential within hepatocytes to prevent liver tumor development. Molecular characterization of pre-malignant HP1-Triple KO livers revealed that HP1 are essential for the maintenance of the structural organization of heterochromatin but surprisingly, not for several well known heterochromatin functions such as the maintenance of the genome stability nor the regulation of major satellite repeat expression within liver. We further show that some specific retrotransposons, mainly of the ERV family, get reactivated in HP1-TKO livers correlating, in some cases, with the activation of the adjacent genes. We present evidence that this reactivation of ERV relies on the HP1-dependent ability of the corepressor TRIM28 to regulate KRAB-ZFP repressive activity. Intriguingly, we found that in contrast to the observation in young animals, the HP1-dependent maintenance of ERV silencing becomes independent of TRIM28 in old animals. Finally, we showed that HP1 are also essential directly or indirectly for the regulation of single genes with most of them having well characterized functions in liver homeostasis such as regulation of the redox and endoplasmic reticulum equilibrium, lipid metabolism and steroid biosynthesis.Altogether, our findings indicate that HP1 proteins, through the modulation of multiple chromatin-associated events both within the heterochromatic and euchromatic compartments, act as guardians of liver homeostasis to prevent tumor development.
- Published
- 2018
- Full Text
- View/download PDF
7. SAMHD1 acts at stalled replication forks to prevent interferon induction
- Author
-
Philippe Pasero, Maria-Joao Silva, Anne-Lyne Schmitz, Alexandra Cribier, Hervé Técher, Amélie Sarrazin, Elodie Dardillac, Clément Mettling, Antoine Barthe, Jadwiga Nieminuszczy, Bernard S. Lopez, Andrei Chabes, Yea-Lih Lin, Flavie Coquel, Lumir Krejci, Sushma Sharma, Vincenzo Costanzo, Karina Zadorozhny, Wojciech Niedzwiedz, Monsef Benkirane, Alexy Promonet, Institut de génétique humaine (IGH), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Peter MacCallum Cancer Centre, East Melbourne, Victoria, IFOM, Istituto FIRC di Oncologia Molecolare (IFOM), Department of Biology [Brno] (MED / MUNI), Faculty of Medicine [Brno] (MED / MUNI), Masaryk University [Brno] (MUNI)-Masaryk University [Brno] (MUNI), Department of Medical Biochemistry and Biophysics and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, The institute of cancer research [London], Stabilité Génétique et Oncogenèse (UMR 8200), Université Paris-Sud - Paris 11 (UP11)-Institut Gustave Roussy (IGR)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11), Ligue Nationale Contre le Cancer - Paris, Ligue Nationale Contre le Cancer (LNCC), Plateforme RIO Imaging (PHIV MRI), BioCampus (BCM), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), International Clinical Research Center, St Anne's University Hospital, Brno, Ligue Nationnale Contre le Cancer, BioCampus Montpellier (BCM), Université Montpellier 1 (UM1)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Intégrité du génome et cancers (IGC), Institut Gustave Roussy (IGR)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and Institut Gustave Roussy (IGR)
- Subjects
DNA Replication ,0301 basic medicine ,[SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiology ,[SDV]Life Sciences [q-bio] ,DNA, Single-Stranded ,[SDV.CAN]Life Sciences [q-bio]/Cancer ,Biology ,Nervous System Malformations ,SAM Domain and HD Domain-Containing Protein 1 ,03 medical and health sciences ,chemistry.chemical_compound ,Cytosol ,Autoimmune Diseases of the Nervous System ,MRE11 Homologue Protein ,Interferon ,medicine ,Humans ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,CHEK1 ,Inflammation ,[SDV.GEN]Life Sciences [q-bio]/Genetics ,Multidisciplinary ,RecQ Helicases ,HEK 293 cells ,DNA replication ,Membrane Proteins ,DNA ,Nucleotidyltransferases ,3. Good health ,Cell biology ,HEK293 Cells ,030104 developmental biology ,chemistry ,Checkpoint Kinase 1 ,Interferon Type I ,Interferons ,Interferon type I ,HeLa Cells ,medicine.drug ,SAMHD1 - Abstract
International audience; DNA replication is an extremely complex process, involving thousands of replication forks progressing along chromosomes. These forks are requently slowed down or stopped by various obstacles, such as secondary DNA structures, chromatin-acting proteins or a lack of nucleotides. Thisslowing down, known as replicative stress, plays a central role in tumour development. Complex processes, which are not yet fully understood, are set up to respond to this stress. Certain nucleases, such as MRE11 and DNA2, degrade the neo-replicated DNA at the level of blocked forks, allowing the replication to restart. The interferon pathway is a defense mechanism against pathogens that detects the presence of foreign nucleic acids in the cytoplasm and activates the innate immune response. DNA fragments resulting from genomic DNA metabolism (repair, retrotransposition) can diffuse into the cytoplasm and activate this pathway. A pathological manifestation of this process is the Aicardi-Goutières syndrome, a rare disease characterized by chronic inflammation leading to neurodegenerative and developmental problems. In this encephalopathy, it has been suggested that DNA replication may generate cytosolic DNA fragments, but the mechanisms involved have not beencharacterized. SAMHD1 is frequently mutated in the Aicardi-Goutières syndrome as well as in some cancers, but its role in the etiology of these diseases was largely unknown. We show that cytosolic DNA accumulates in SAMHD1-deficient cells, particularly in the presence of replicative stress, activating the interferon response. SAMHD1 is important for DNA replication under normal conditions and for the processing of stopped forks, independent of its dNTPase activity. In addition, SAMHD1 stimulates the exonuclease activity of MRE11 in vitro. When SAMHD1 is absent, degradation of neosynthesized DNA is inhibited, which prevents activation of the replication checkpoint and leads to failure to restart the replication forks. Resection of the replication forks is performed by an alternative mechanism which releases DNA fragments into the cytosol, activating the interferon response. The results obtained show, for the first time, a direct link between the response to replication stress and the production of interferons. These results have important implications for our understanding of the Aicardi-Goutières syndrome and cancers related to SAMHD1. For example, we have shown that MRE11 and RECQ1 are responsible for the production of DNA fragments that trigger the inflammatory response in cells deficient for SAMHD1. We can therefore imagine that blocking the activity of these enzymes could decrease the production of DNA fragments and, ultimately, the activation of innate immunity in these cells. In addition, the interferon pathway plays an essential role in the therapeutic efficacy of irradiation and certain chemotherapeutic agents such as oxaliplatin. Modulating this response could therefore be of much wider interest in anti-tumour therapy; La réplication de l’ADN est un processus extrêmement complexe, impliquant des milliers de fourches de réplication progressant le long des chromosomes. Ces fourches sont fréquemment ralenties ou arrêtées par différents obstacles, tels que des structures secondaires de l’ADN, des protéines agissant sur la chromatine ou encore un manque de nucléotides. Ce ralentissement, qualifié de stress réplicatif, joue un rôle central dans le développement tumoral. Des processus complexes, qui ne sont pas encore totalement connus, sont mis en place pour répondre à ce stress. Certaines nucléases, comme MRE11 et DNA2, dégradent l’ADN néorépliqué au niveau des fourches bloquées, ce qui permet le redémarrage des réplisomes. La voie interféron est un mécanisme de défense contre les agents pathogènes qui détecte la présence d’acides nucléiques étrangers dans le cytoplasme et active la réponse immunitaire innée. Des fragments d’ADN issus du métabolisme de l’ADN génomique (réparation, rétrotransposition) peuvent diffuser dans le cytoplasme et activer cette voie. Une manifestation pathologique de ce processus est le syndrome d’Aicardi-Goutières, une maladie rare caractérisée par une inflammation chronique générant des problèmes neurodégénératifs et développementaux. Dans le cadre de cette encéphalopathie, il a été suggéré que la réplication de l’ADN pouvait générer des fragments d’ADN cytosoliques, mais les mécanismes impliqués n’avaient pas été caractérisés. SAMHD1 est fréquemment muté dans le syndrome d’Aicardi-Goutières ainsi que dans certains cancers, mais son rôle dans l’étiologie de ces maladies était jusqu’à présent largement inconnu. Nous montrons que de l’ADN cytosolique s’accumule dans les cellules déficientes pour SAMHD1, particulièrement en présence de stress réplicatif, activant la réponse interféron. Par ailleurs, SAMHD1 est important pour la réplication de l’ADN en conditions normales et pour le processing des fourches arrêtées, indépendamment de son activité dNTPase. De plus, SAMHD1 stimule l’activité exonucléase de MRE11 in vitro. Lorsque SAMHD1 est absent, la dégradation de l’ADN néosynthétisé est inhibée, ce qui empêche l’activation du checkpoint de réplication et entraine un défaut de redémarrage des fourches de réplication. De plus, la résection des fourches de réplication est réalisée par un mécanisme alternatif qui libère des fragments d’ADN dans le cytosol, activant la réponse interféron. Les résultats obtenus montrent, pour la première fois, un lien direct entre la réponse au stress réplicatif et la production d’interférons. Ces résultats ont des conséquences importantes dans notre compréhension du syndrome d’Aicardi Goutières et des cancers liés à SAMHD1. Par exemple, nous avons démontré que MRE11 et RECQ1 sont responsables de la production des fragments d’ADN qui déclenchent la réponse inflammatoire dans les cellules déficientes pour SAMHD1. Nous pouvons donc imaginer que bloquer l’activité de ces enzymes pourrait diminuer la production des fragments d’ADN et, in fine, l’activation de l’immunité innée dans ces cellules. Par ailleurs, la voie interférons joue un rôle essentiel dans l’efficacité thérapeutique de l’irradiation et de certains agents chimiothérapiques comme l’oxaliplatine. Moduler cette réponse pourrait donc avoir un intérêt beaucoup plus large en thérapie anti-tumorale
- Published
- 2018
- Full Text
- View/download PDF
8. Impact of the laurina mutation in Coffea arabica L. on semi-dwarfism, cell number and hormonal profiles in hypocotyls of seedlings growing under daylight
- Author
-
Michel Noirot, Geneviève Conejero, Amélie Sarrazin, Julien Hoareau, Isabelle Fock-Bastide, Jean-Luc Verdeil, Irina L. Zaharia, Sophie Adler, UMR Peuplement Végétaux et Bioagresseurs en Milieu Tropical (UMR PVBMT - INRA), Institut National de la Recherche Agronomique (INRA), Plateforme d'histocytologie et d'imagerie cellulaire végétale (PHIV), Biochimie et Physiologie Moléculaire des Plantes (BPMP), Université de Montpellier (UM)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS)-Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP), Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro), Université de Montpellier (UM)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS), Aquatic and Crop Ressource Development, National Research Council of Canada (NRC), Plateforme RIO Imaging (PHIV MRI), Peuplements végétaux et bioagresseurs en milieu tropical (UMR PVBMT), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Université de La Réunion (UR), Peuplement Végétaux et Bioagresseurs en Milieu Tropical - Pôle de Protection des Plantes (3P), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Université de La Réunion (UR)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Université de La Réunion (UR), Institut de Recherche pour le Développement (IRD)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Université de La Réunion (UR)-Institut National de la Recherche Agronomique (INRA), Institut de Recherche pour le Développement (IRD)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Université de La Réunion (UR)-Institut National de la Recherche Agronomique (INRA)-Institut de Recherche pour le Développement (IRD)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Université de La Réunion (UR)-Institut National de la Recherche Agronomique (INRA), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro), and Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
- Subjects
genetic structures ,Cell division ,Physiology ,Dwarfism ,F62 - Physiologie végétale - Croissance et développement ,Plant Science ,F50 - Anatomie et morphologie des plantes ,Hypocotyl ,F30 - Génétique et amélioration des plantes ,Cytokinine ,chemistry.chemical_compound ,heterocyclic compounds ,Auxin ,Abscisic acid ,chemistry.chemical_classification ,Ecology ,Plant physiology ,food and beverages ,Forestry ,Coffea arabica ,Hypocotyl semi-dwarfism ,Physiologie végétale ,ABA ,Cytokinin ,Division cellulaire ,Hypocotyl semidwarfism ,Développement biologique ,Coffea arabica ‘Laurina’ ,Biology ,Botany ,medicine ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,Coffea arabica 'Laurina' ,fungi ,Nanisme ,medicine.disease ,Auxine ,chemistry ,Mutation ,Hypocotyle - Abstract
Key message Hypocotyl semi-dwarfism in BP was only due to less cell number. Daylight was required to inhibit cell division in the mutant. ABA, IAA and cytokinins would be involved. Abstract Coffea arabica 'Laurina' is a natural mutant of Coffea arabica 'Bourbon' (B) and is known under the trade name 'Bourbon Pointu' (BP). Under daylight, the laurina mutation leads to pleiotropic effects, including semi-dwarf hypocotyls. At the opposite, semi-dwarfism of BP seedlings disappeared under darkness conditions. The first step was to describe the morphological impact of the mutation in seedlings growing under daylight by comparison with seedlings growing under darkness. As the hypocotyl length was mainly affected, the second step was to investigate histological modifications in the organ comparing B and BP seedlings growing under daylight. Result of this investigation indicated that the mutation does not impact on cell length. Moreover, cytometry analyses showed absence of endoreduplication. Actually, the mutation influenced the cell number and this effect appeared before the 40th day after sowing. The length difference of hypocotyls between B and BP was due to lower cell number in BP, indicating possible involvement of phytohormones. Investigations showed the decrease of cytokinin and auxin levels in BP compared to B, while the cytokinin/auxin ratio remained constant in both varieties. By contrast, abscisic acid content increased in BP. Concurrently these results indicate the lowering of cell division, due to the mutation.
- Published
- 2015
- Full Text
- View/download PDF
9. RNA interference screen reveals a high proportion of mitochondrial proteins essential for correct cell cycle progress in Trypanosoma brucei
- Author
-
Michel Pagès, Lucien Crobu, Yvon Sterkers, Patrick Bastien, Amélie Sarrazin, Diane-Ethna Mbang-Benet, Nowak, Cécile, Biologie, Génétique et Pathologie des Pathogènes Eucaryotes (MIVEGEC-BioGEPPE), Pathogènes, Environnement, Santé Humaine (EPATH), Génétique et évolution des maladies infectieuses (GEMI), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Génétique et évolution des maladies infectieuses (GEMI), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud]), Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud]), BioCampus (BCM), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Maladies infectieuses et vecteurs : écologie, génétique, évolution et contrôle (MIVEGEC), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Maladies infectieuses et vecteurs : écologie, génétique, évolution et contrôle (MIVEGEC), BioCampus Montpellier (BCM), and Université Montpellier 1 (UM1)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDV.BIO]Life Sciences [q-bio]/Biotechnology ,Cell division ,Kinetoplast ,Cell ,Trypanosoma brucei brucei ,Oligonucleotides ,Protozoan Proteins ,[SDV.GEN] Life Sciences [q-bio]/Genetics ,Trypanosoma brucei ,Mitochondrion ,Cell cycle ,Mitochondrial Proteins ,RNA interference ,medicine ,Genetics ,Cytokinesis ,[SDV.GEN]Life Sciences [q-bio]/Genetics ,biology ,Cell growth ,biology.organism_classification ,Cell biology ,Mitochondria ,[SDV.BIO] Life Sciences [q-bio]/Biotechnology ,medicine.anatomical_structure ,Cell Division ,Biotechnology ,Research Article - Abstract
Background Trypanosomatid parasites possess a single mitochondrion which is classically involved in the energetic metabolism of the cell, but also, in a much more original way, through its single and complex DNA (termed kinetoplast), in the correct progress of cell division. In order to identify proteins potentially involved in the cell cycle, we performed RNAi knockdowns of 101 genes encoding mitochondrial proteins using procyclic cells of Trypanosoma brucei. Results A major cell growth reduction was observed in 10 cases and a moderate reduction in 29 other cases. These data are overall in agreement with those previously obtained by a case-by-case approach performed on chromosome 1 genes, and quantitatively with those obtained by “high-throughput phenotyping using parallel sequencing of RNA interference targets” (RIT-seq). Nevertheless, a detailed analysis revealed many qualitative discrepancies with the RIT-seq-based approach. Moreover, for 37 out of 39 mutants for which a moderate or severe growth defect was observed here, we noted abnormalities in the cell cycle progress, leading to increased proportions of abnormal cell cycle stages, such as cells containing more than 2 kinetoplasts (K) and/or more than 2 nuclei (N), and modified proportions of the normal phenotypes (1N1K, 1N2K and 2N2K). Conclusions These data, together with the observation of other abnormal phenotypes, show that all the corresponding mitochondrial proteins are involved, directly or indirectly, in the correct progress or, less likely, in the regulation, of the cell cycle in T. brucei. They also show how post-genomics analyses performed on a case-by-case basis may yield discrepancies with global approaches. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1505-5) contains supplementary material, which is available to authorized users.
- Published
- 2015
- Full Text
- View/download PDF
10. Visualization of the 3D structure of the graft union of grapevine using X-ray tomography
- Author
-
Jean-Luc Verdeil, Anne-Sophie Renault-Spilmont, Mayeul Milien, Amélie Sarrazin, Sarah Jane Cookson, Institut Français de la Vigne et du Vin (IFV), Ecophysiologie et Génomique Fonctionnelle de la Vigne (UMR EGFV), Institut National de la Recherche Agronomique (INRA)-Université Sciences et Technologies - Bordeaux 1-Université Victor Segalen - Bordeaux 2-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro), and Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)
- Subjects
0106 biological sciences ,Materials science ,[SDV]Life Sciences [q-bio] ,F62 - Physiologie végétale - Croissance et développement ,Horticulture ,01 natural sciences ,03 medical and health sciences ,F01 - Culture des plantes ,3D imaging ,grapevine (Vitis vinifera) ,Botany ,vascular connections ,Vitis vinifera ,030304 developmental biology ,0303 health sciences ,x-ray tomography ,Quality assessment ,Low resolution ,Xylem ,15. Life on land ,Grafting ,graft quality ,surgical procedures, operative ,[SDE]Environmental Sciences ,Pith ,graft interface ,Tomography ,U30 - Méthodes de recherche ,Rootstock ,010606 plant biology & botany ,Biomedical engineering - Abstract
International audience; Successful grafting in plants requires the development of a functional vascular system between the scion and the rootstock. Understanding the spatial organization of the graft interface is important to the evaluation of new rootstock genotypes and to the development of new grafting technologies. Until now the graft interface has only been studied using 2D classical histology and low resolution 3D magnetic resonance imaging. Here we investigate the ability of X-ray tomography to examine the graft interface of Vitis vinifera in high resolution and in 3D. Data were collected using a Skyscan 1076, scanning parameters, such as. X-ray energy, filter selection, pixel size and rotation angles, were optimized to study the particularities of the graft interface. The X-ray tomography technique was then used to evaluate graft quality. Two young vines were compared; one graft was classified as of 'good' quality, whereas the other was classified as of 'bad' quality. We were able to distinguish the "omega cut", the pith, the phloem and the xylem vessels in the images. The analysis shows several differences between the two vines. In the good graft, tissues appear well-connected in the wood and phloem, and had a regular structure; the wood appears homogenous with a lot of vessels that form a compact mass. By contrast, in the bad graft, the structures appear disorganized and not completely connected. Numerous new vessels, continuous between the scion and the rootstock, are visible in the "good graft" whereas only few ones are visible in the "bad one". It is the first time, to our knowledge, that 3D imaging of the graft interface and the vascular connections across it have been reported, opening new avenues for graft quality assessment in woody plants.
- Published
- 2012
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.