Pauline Gilson, Fernando Josa-Prado, Claire Beauvineau, Delphine Naud-Martin, Laetitia Vanwonterghem, Florence Mahuteau-Betzer, Alexis Moreno, Pierre Falson, Laurence Lafanechère, Véronique Frachet, Jean-Luc Coll, Jose Fernando Díaz, Amandine Hurbin, Benoit Busser, Hurbin, Amandine, Institute for Advanced Biosciences / Institut pour l'Avancée des Biosciences (Grenoble) (IAB), Centre Hospitalier Universitaire [Grenoble] (CHU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Etablissement français du sang - Auvergne-Rhône-Alpes (EFS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Dpt biochimie, toxicologie, pharmacologie [CHU Grenoble], CHU Grenoble, Centro de Investigaciones Biológicas (CSIC), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Chimie, Modélisation et Imagerie pour la Biologie [Orsay], Université Paris-Sud - Paris 11 (UP11)-Institut Curie [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Microbiologie moléculaire et biochimie structurale / Molecular Microbiology and Structural Biochemistry (MMSB), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), This work was supported by the Institut Curie, the CNRS, the INSERM, and by grants from La Fondation de France, La Ligue contre le Cancer (comité de l’Isère), Cancéropôle CLARA (Lyon Auvergne Rhône-Alpes), and BFU2016–75319-R (AEI/FEDER, UE) from Ministerio de Economia y Competitividad (JFD)., Centre Hospitalier Universitaire [Grenoble] (CHU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Etablissement français du sang - Auvergne-Rhône-Alpes (EFS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Biochemistry Pharmacology and Toxicology Department, Centre Hospitalo-Universitaire de Grenoble, Institut de biologie et chimie des protéines [Lyon] (IBCP), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL), Université Grenoble Alpes - UFR Pharmacie ( UGA UFRP ), Université Grenoble Alpes ( UGA ), Unité de pharmacologie chimique et génétique et d'imagerie ( UPCGI - UMR 8151 / UMR_S 1022 ), Ecole Nationale Supérieure de Chimie de Paris- Chimie ParisTech-PSL ( ENSCP ) -Université Paris Descartes - Paris 5 ( UPD5 ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ), Conception, synthèse et vectorisation de biomolécules. ( CSVB ), INSTITUT CURIE-Centre National de la Recherche Scientifique ( CNRS ) -Université Paris Descartes - Paris 5 ( UPD5 ), Laboratoire d'Etudes et de Recherches Appliquées en Sciences Sociales ( LERASS ), Université Paul-Valéry - Montpellier 3 ( UM3 ) -Université Toulouse - Jean Jaurès ( UT2J ) -Université Toulouse III - Paul Sabatier ( UPS ), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, Institut de biologie et chimie des protéines [Lyon] ( IBCP ), Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique ( CNRS ), Groupe Plateforme et Moyens Scientifiques et techniques communs / Centre de Criblage pour Molécules Bio-Actives ( GPMS / CMBA ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), INSERM U823, équipe 5 (cibles diagnostiques ou thérapeutiques et vectorisation de drogues dans le cancer du poumon), Institut d'oncologie/développement Albert Bonniot de Grenoble ( INSERM U823 ), Université Joseph Fourier - Grenoble 1 ( UJF ) -CHU Grenoble-EFS-Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Université Joseph Fourier - Grenoble 1 ( UJF ) -CHU Grenoble-EFS-Institut National de la Santé et de la Recherche Médicale ( INSERM ), Université Joseph Fourier - Grenoble 1 ( UJF ) -CHU Grenoble-EFS-Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Université Joseph Fourier - Grenoble 1 ( UJF ) -CHU Grenoble-EFS-Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Biochimie des Cancers et Biothérapies, CHU Grenoble-Hôpital Michallon-Hôpital Michallon, and Falson, pierre
International audience; Despite the emergence of targeted therapies and immunotherapy, chemotherapy remains the gold-standard for the treatment of most patients with solid malignancies. Spindle poisons that interfere with microtubule dynamics are commonly used in chemotherapy drug combinations. However, their troublesome side effects and the emergence of chemoresistance highlight the need for identifying alternative agents. We performed a high throughput cell-based screening and selected a pyrrolopyrimidine molecule (named PP-13). In the present study, we evaluated its anticancer properties in vitro and in vivo. We showed that PP-13 exerted cytotoxic effects on various cancer cells, including those resistant to current targeted therapies and chemotherapies. PP-13 induced a transient mitotic blockade by interfering with both mitotic spindle organization and microtubule dynamics and finally led to mitotic slippage, aneuploidy and direct apoptotic death. PP-13 was identified as a microtubule-targeting agent that binds directly to the colchicine site in β-tubulin. Interestingly, PP-13 overcame the multidrug-resistant cancer cell phenotype and significantly reduced tumour growth and metastatic invasiveness without any noticeable toxicity for the chicken embryo in vivo. Overall, PP-13 appears to be a novel synthetic microtubule inhibitor with interesting anticancer properties and could be further investigated as a potent alternative for the management of malignancies including chemoresistant ones. In the last two decades, advances in the understanding of carcinogenesis have revolutionized the management of cancer patients with the development of targeted therapies and immunotherapy. Identification of genetic alterations in subsets of cancers leading to different subcellular signals of tumour growth and progression elicited the clinical use of oncogene-targeted therapies for patients harbouring such anomalies 1-4. In lung cancers with EGFR-activating mutations, anti-EGFR therapies, including gefitinib, erlotinib, and afatinib, have been shown to improve progression-free survival and were approved as first-line options 5. However, despite the initial response, resistance mechanisms almost inevitably ensue and limit the long-term potency of targeted therapies 6, 7. Moreover, efforts are still needed for the management of patients without targetable oncogenic driver