1. Alloantigen-specific type 1 regulatory T cells suppress through CTLA-4 and PD-1 pathways and persist long-term in patients.
- Author
-
Chen PP, Cepika AM, Agarwal-Hashmi R, Saini G, Uyeda MJ, Louis DM, Cieniewicz B, Narula M, Amaya Hernandez LC, Harre N, Xu L, Thomas BC, Ji X, Shiraz P, Tate KM, Margittai D, Bhatia N, Meyer E, Bertaina A, Davis MM, Bacchetta R, and Roncarolo MG
- Subjects
- CD4-Positive T-Lymphocytes, CTLA-4 Antigen, Humans, T-Lymphocytes, Regulatory, Isoantigens, Programmed Cell Death 1 Receptor
- Abstract
Type 1 regulatory T (Tr1) cells are inducible, interleukin (IL)-10
+ FOXP3− regulatory T cells that can suppress graft-versus-host disease (GvHD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT). We have optimized an in vitro protocol to generate a Tr1-enriched cell product called T-allo10, which is undergoing clinical evaluation in patients with hematological malignancies receiving a human leukocyte antigen (HLA)–mismatched allo-HSCT. Donor-derived T-allo10 cells are specific for host alloantigens, are anergic, and mediate alloantigen-specific suppression. In this study, we determined the mechanism of action of T-allo10 cells and evaluated survival of adoptively transferred Tr1 cells in patients. We showed that Tr1 cells, in contrast to the non-Tr1 population, displayed a restricted T cell receptor (TCR) repertoire, indicating alloantigen-induced clonal expansion. Tr1 cells also had a distinct transcriptome, including high expression of cytotoxic T lymphocyte–associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1). Blockade of CTLA-4 or PD-1/PD-L1 abrogated T-allo10–mediated suppression, confirming that these proteins, in addition to IL-10, play key roles in Tr1-suppressive function and that Tr1 cells represent the active component of the T-allo10 product. Furthermore, T-allo10–derived Tr1 cells were detectable in the peripheral blood of HSCT patients up to 1 year after T-allo10 transfer. Collectively, we revealed a distinct molecular phenotype, mechanisms of action, and in vivo persistence of alloantigen-specific Tr1 cells. These results further characterize Tr1 cell biology and provide essential knowledge for the design and tracking of Tr1-based cell therapies.- Published
- 2021
- Full Text
- View/download PDF