1. Brown Spider Venom Phospholipases D: From Potent Molecules Involved in Pathogenesis of Brown Spider Bites to Molecular Tools for Studying Ectosomes, Ectocytosis, and Its Applications
- Author
-
Ana Carolina Martins Wille, Mariana Izabele Machado, Samira Hajjar Souza, Hanna Câmara da Justa, Maria Eduarda de Fraga-Ferreira, Eloise de Souza Mello, Luiza Helena Gremski, and Silvio Sanches Veiga
- Subjects
brown spider venom phospholipases D ,biochemical properties ,plasma membrane ,ectosomes ,signalosomes ,Medicine - Abstract
Accidents caused by Loxosceles spiders, commonly known as brown spiders, are frequent in warm and temperate regions worldwide, with a higher prevalence in South America and the southern United States. In the venoms of species clinically associated with accidents, phospholipases D (PLDs) are the most expressed toxins. This classification is based on the toxins’ ability to cleave various phospholipids, with a preference for sphingomyelin. Studies using purified PLDs have demonstrated that these enzymes cleave phospholipids from cells, producing derivatives that can activate leukocytes. A dysregulated inflammatory response is the primary effect following envenomation, leading to dermonecrosis, which is histopathologically characterized by aseptic coagulative necrosis—a key feature of envenomation. Although advances in understanding the structure–function relationship of enzymes have been achieved through molecular biology, heterologous expression, site-directed mutations, crystallography, and bioinformatic analyses—describing PLDs in the venoms of various species and highlighting the conservation of amino acid residues involved in catalysis, substrate binding, and magnesium stabilization—little is known about the cellular biology of these PLDs. Studies have shown that the treatment of various cells with recombinant PLDs stimulates the formation of ectosomes and ectocytosis, events that initiate a cascade of intracellular signaling in PLD-binding cells and lead to the release of extracellular microvesicles. These microvesicles may act as signalosomes for other target cells, thereby triggering an inflammatory response and dermonecrosis. In this review, we will discuss the biochemical properties of PLDs, the target cells that bind to them, and the ectocytosis-dependent pathophysiology of envenoming.
- Published
- 2025
- Full Text
- View/download PDF