1. Validation of a noninvasive technique to precisely measure in vivo three-dimensional cervical spine movement.
- Author
-
Anderst WJ, Baillargeon E, Donaldson WF 3rd, Lee JY, Kang JD, Anderst, William J, Baillargeon, Emma, Donaldson, William F 3rd, Lee, Joon Y, and Kang, James D
- Abstract
Study Design: In vivo validation during functional loading.Objective: To determine the accuracy and repeatability of a model-based tracking technique that combines subject-specific computed tomographic (CT) models and high-speed biplane x-ray images to measure three-dimensional (3D) in vivo cervical spine motion.Summary Of Background Data: Accurate 3D spine motion is difficult to obtain in vivo during physiological loading because of the inability to directly attach measurement equipment to individual vertebrae. Previous measurement systems were limited by two-dimensional (2D) results and/or their need for manual identification of anatomical landmarks, precipitating unreliable and inaccurate results. All previous techniques lack the ability to capture true 3D motion during dynamic functional loading.Methods: Three subjects had 1.0-mm-diameter tantalum beads implanted into their fused and adjacent vertebrae during anterior cervical discectomy and fusion surgery. High-resolution CT scans were obtained after surgery and used to create subject-specific 3D models of each cervical vertebra. Biplane x-ray images were collected at 30 frames per second while the subjects performed flexion/extension and axial rotation movements 6 months after surgery. Individual bone motion, intervertebral kinematics, and arthrokinematics derived from dynamic radiostereophotogrammetric analysis served as a gold standard to evaluate the accuracy of the model-based tracking technique.Results: Individual bones were tracked with an average precision of 0.19 and 0.33 mm in nonfused and fused bones, respectively. Precision in measuring 3D joint kinematics in fused and adjacent segments averaged 0.4 mm for translations and 1.1° for rotations, while anterior and posterior disc height above and below the fusion were measured with a precision ranging between 0.2 and 0.4 mm. The variability in 3D joint kinematics associated with tracking the same trial repeatedly was 0.02 mm in translation and 0.06° in rotation.Conclusion: The 3D cervical spine motion can be precisely measured in vivo with submillimeter accuracy during functional loading without the need for bead implantation. Fusion instrumentation did not diminish the accuracy of kinematic and arthrokinematic results. The semiautomated model-based tracking technique has excellent repeatability. [ABSTRACT FROM AUTHOR]- Published
- 2011
- Full Text
- View/download PDF