7 results on '"Angeria M"'
Search Results
2. Mechanisms of blast induced brain injuries, experimental studies in rats
- Author
-
Risling, M, Plantman, S, Angeria, M, Rostami, Elham, Bellander, B-M, Kirkegaard, M, Arbsorelius, U, Davidsson, J, Risling, M, Plantman, S, Angeria, M, Rostami, Elham, Bellander, B-M, Kirkegaard, M, Arbsorelius, U, and Davidsson, J
- Published
- 2011
- Full Text
- View/download PDF
3. Spinocerebellar ataxia type 4 is caused by a GGC expansion in the ZFHX3 gene and is associated with prominent dysautonomia and motor neuron signs.
- Author
-
Paucar M, Nilsson D, Engvall M, Laffita-Mesa J, Söderhäll C, Skorpil M, Halldin C, Fazio P, Lagerstedt-Robinson K, Solders G, Angeria M, Varrone A, Risling M, Jiao H, Nennesmo I, Wedell A, and Svenningsson P
- Subjects
- Adult, Female, Humans, Male, Middle Aged, Pedigree, Positron-Emission Tomography, Primary Dysautonomias genetics, Sweden, Trinucleotide Repeat Expansion genetics, Homeodomain Proteins genetics, Spinocerebellar Ataxias genetics, Spinocerebellar Ataxias diagnostic imaging
- Abstract
Background: Spinocerebellar ataxia 4 (SCA4), characterized in 1996, features adult-onset ataxia, polyneuropathy, and linkage to chromosome 16q22.1; its underlying mutation has remained elusive., Objective: To explore the radiological and neuropathological abnormalities in the entire neuroaxis in SCA4 and search for its mutation., Methods: Three Swedish families with undiagnosed ataxia went through clinical, neurophysiological, and neuroimaging tests, including PET studies and genetic investigations. In four cases, neuropathological assessments of the neuroaxis were performed. Genetic testing included short read whole genome sequencing, short tandem repeat analysis with ExpansionHunter de novo, and long read sequencing., Results: Novel features for SCA4 include dysautonomia, motor neuron affection, and abnormal eye movements. We found evidence of anticipation; neuroimaging demonstrated atrophy in the cerebellum, brainstem, and spinal cord. [
18 F]FDG-PET demonstrated brain hypometabolism and [11 C]Flumazenil-PET reduced binding in several brain lobes, insula, thalamus, hypothalamus, and cerebellum. Moderate to severe loss of Purkinje cells in the cerebellum and of motor neurons in the anterior horns of the spinal cord along with pronounced degeneration of posterior tracts was also found. Intranuclear, mainly neuronal, inclusions positive for p62 and ubiquitin were sparse but widespread in the CNS. This finding prompted assessment for nucleotide expansions. A polyglycine stretch encoding GGC expansions in the last exon of the zink finger homeobox 3 gene was identified segregating with disease and not found in 1000 controls., Conclusions: SCA4 is a neurodegenerative disease caused by a novel GGC expansion in the coding region of ZFHX3, and its spectrum is expanded to include dysautonomia and neuromuscular manifestations., (© 2024 The Author(s). Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine.)- Published
- 2024
- Full Text
- View/download PDF
4. Study of Autophagy and Microangiopathy in Sural Nerves of Patients with Chronic Idiopathic Axonal Polyneuropathy.
- Author
-
Samuelsson K, Osman AA, Angeria M, Risling M, Mohseni S, and Press R
- Abstract
Twenty-five percent of polyneuropathies are idiopathic. Microangiopathy has been suggested to be a possible pathogenic cause of chronic idiopathic axonal polyneuropathy (CIAP). Dysfunction of the autophagy pathway has been implicated as a marker of neurodegeneration in the central nervous system, but the autophagy process is not explored in the peripheral nervous system. In the current study, we examined the presence of microangiopathy and autophagy-related structures in sural nerve biopsies of 10 patients with CIAP, 11 controls with inflammatory neuropathy and 10 controls without sensory polyneuropathy. We did not find any significant difference in endoneurial microangiopathic markers in patients with CIAP compared to normal controls, though we did find a correlation between basal lamina area thickness and age. Unexpectedly, we found a significantly larger basal lamina area thickness in patients with vasculitic neuropathy. Furthermore, we found a significantly higher density of endoneurial autophagy-related structures, particularly in patients with CIAP but also in patients with inflammatory neuropathy, compared to normal controls. It is unclear if the alteration in the autophagy pathway is a consequence or a cause of the neuropathy. Our results do not support the hypothesis that CIAP is primarily caused by a microangiopathic process in endoneurial blood vessels in peripheral nerves. The significantly higher density of autophagy structures in sural nerves obtained from patients with CIAP and inflammatory neuropathy vs. controls indicates the involvement of this pathway in neuropathy, particularly in CIAP, since the increase in density of autophagy-related structures was more pronounced in patients with CIAP than those with inflammatory neuropathy. To our knowledge this is the first report investigating signs of autophagy process in peripheral nerves in patients with CIAP and inflammatory neuropathy., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2016
- Full Text
- View/download PDF
5. Neuronal RARβ Signaling Modulates PTEN Activity Directly in Neurons and via Exosome Transfer in Astrocytes to Prevent Glial Scar Formation and Induce Spinal Cord Regeneration.
- Author
-
Goncalves MB, Malmqvist T, Clarke E, Hubens CJ, Grist J, Hobbs C, Trigo D, Risling M, Angeria M, Damberg P, Carlstedt TP, and Corcoran JP
- Subjects
- Animals, Cells, Cultured, Cicatrix prevention & control, Male, Mice, Neuroglia pathology, Neurons metabolism, Rats, Rats, Wistar, Signal Transduction physiology, Astrocytes metabolism, Cicatrix metabolism, Exosomes metabolism, Neuroglia metabolism, PTEN Phosphohydrolase metabolism, Receptors, Retinoic Acid physiology, Spinal Cord Regeneration physiology
- Abstract
Failure of axonal regeneration in the central nervous system (CNS) is mainly attributed to a lack of intrinsic neuronal growth programs and an inhibitory environment from a glial scar. Phosphatase and tensin homolog (PTEN) is a major negative regulator of neuronal regeneration and, as such, inhibiting its activity has been considered a therapeutic target for spinal cord (SC) injuries (SCIs). Using a novel model of rat cervical avulsion, we show that treatment with a retinoic acid receptor β (RARβ) agonist results in locomotor and sensory recovery. Axonal regeneration from the severed roots into the SC could be seen by biotinylated dextran amine labeling. Light micrographs of the dorsal root entry zone show the peripheral nervous system (PNS)-CNS transition of regrown axons. RARβ agonist treatment also resulted in the absence of scar formation. Mechanism studies revealed that, in RARβ-agonist-treated neurons, PTEN activity is decreased by cytoplasmic phosphorylation and increased secretion in exosomes. These are taken up by astrocytes, resulting in hampered proliferation and causing them to arrange in a normal-appearing scaffold around the regenerating axons. Attribution of the glial modulation to neuronal PTEN in exosomes was demonstrated by the use of an exosome inhibitor in vivo and PTEN siRNA in vitro assays. The dual effect of RARβ signaling, both neuronal and neuronal-glial, results in axonal regeneration into the SC after dorsal root neurotmesis. Targeting this pathway may open new avenues for the treatment of SCIs., Significance Statement: Spinal cord injuries (SCIs) often result in permanent damage in the adult due to the very limited capacity of axonal regeneration. Intrinsic neuronal programs and the formation of a glial scar are the main obstacles. Here, we identify a single target, neuronal retinoic acid receptor β (RARβ), which modulates these two aspects of the postinjury physiological response. Activation of RARβ in the neuron inactivates phosphatase and tensin homolog and induces its transfer into the astrocytes in small vesicles, where it prevents scar formation. This may open new therapeutic avenues for SCIs., (Copyright © 2015 Goncalves et al.)
- Published
- 2015
- Full Text
- View/download PDF
6. On acute gene expression changes after ventral root replantation.
- Author
-
Risling M, Ochsman T, Carlstedt T, Lindå H, Plantman S, Rostami E, Angeria M, and Sköld MK
- Abstract
Replantation of avulsed spinal ventral roots has been show to enable significant and useful regrowth of motor axons in both experimental animals and in human clinical cases, making up an interesting exception to the rule of unsuccessful neuronal regeneration in central nervous system. Compared to avulsion without repair, ventral root replantation seems to rescue lesioned motoneurons from death. In this study we have analyzed the acute response to ventral root avulsion and replantation in adult rats with gene arrays combined with cluster analysis of gene ontology search terms. The data show significant differences between rats subjected to ventral replantation compared to avulsion only. Even though number of genes related to cell death is similar in the two models after 24 h, we observed a significantly larger number of genes related to neurite growth and development in the rats treated with ventral root replantation, possibly reflecting the neuroregenerative capacity in the replantation model. In addition, an acute inflammatory response was observed after avulsion, while effects on genes related to synaptic transmission were much more pronounced after replantation than after avulsion alone. These data indicate that the axonal regenerative response from replantation is initiated at an earlier stage than the possible differences in terms of neuron survival. We conclude that this type of analysis may facilitate the comparison of the acute response in two types of injury.
- Published
- 2011
- Full Text
- View/download PDF
7. Observations at the CNS-PNS Border of Ventral Roots Connected to a Neuroma.
- Author
-
Remahl S, Angeria M, Remahl IN, Carlstedt T, and Risling M
- Abstract
Previous studies have shown that numerous sprouts originating from a neuroma, after nerve injury in neonatal animals, can invade spinal nerve roots. However, no study with a focus on how such sprouts behave when they reach the border between the central and peripheral nervous system (CNS-PNS border) has been published. In this study we have in detail examined the CNS-PNS border of ventral roots in kittens with light and electron microscopy after early postnatal sciatic nerve resection. A transient ingrowth of substance P positive axons was observed into the CNS, but no spouts remained 6 weeks after the injury. Using serial sections and electron microscopy it was possible to identify small bundles of unmyelinated axons that penetrated from the root fascicles for a short distance into the CNS. These axons ended blindly, sometimes with a growth cone-like terminal swelling filled with vesicles. The axon bundles were accompanied by p75 positive cells in both the root fascicles and the pia mater, but not in the CNS. It may thus be suggested that neurotrophin presenting p75 positive cells could facilitate axonal growth into the pia mater and that the lack of such cells in the CNS compartment might contribute to the failure of growth into the CNS. A maldevelopment of myelin sheaths at the CNS-PNS border of motor axons was observed and it seems possible that this could have consequences for the propagation of action potential across this region after neonatal nerve injury. Thus, in this first detailed study on the behavior of recurrent sprouts at the CNS-PNS border.
- Published
- 2010
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.