1. Improved protocol for simultaneous analysis of leukocyte subsets and epithelial cells from murine and human lung
- Author
-
Martin Wetzke, Ruth Grychtol, Lena Meyer-Decking, Adan Chari Jirmo, Anika Dreier, Jelena Skuljec, Anika Habener, Peter Braubach, Sibylle Haid, Stephanie Gläsener, Gesine Hansen, Christine Happle, and Alexandra Jablonka
- Subjects
0301 basic medicine ,Pulmonary and Respiratory Medicine ,Proteolysis ,Clinical Biochemistry ,Cell ,Epitope ,Flow cytometry ,Human lung ,Mice ,03 medical and health sciences ,Clinical Protocols ,Endopeptidases ,Leukocytes ,medicine ,Animals ,Humans ,Collagenases ,Lung ,Molecular Biology ,Deoxyribonucleases ,medicine.diagnostic_test ,Enzymatic digestion ,Chemistry ,Epithelial Cells ,Cell biology ,030104 developmental biology ,medicine.anatomical_structure ,Collagenase ,medicine.drug - Abstract
To study and isolate lung cells by flow cytometry, enzymatic digestion and generation of single cell suspensions is required. This significantly influences expression of cellular epitopes and protocols need to be adapted for the best isolation and subsequent analysis of specific cellular subsets.We optimized protocols for the simultaneous isolation and characterization of specific human and murine lung cell types. For alveolar epithelial cells (AEC), a primarily dispase based digestion method and for leukocytes, a primarily collagenase based technique was adapted. Protocols were applied in parallel in either single experimental mice or human lung specimens.Optimized dispase/DNase digestion yielded a high percentage of Epcam+CD45-CD31- AEC as assessed by flow cytometry. Epcam+CD45-CD3-CD11b-CD11c-CD16/32-CD19-CD31-F4/80- AEC were readily sortable with high purity and typical morphology and function upon in vitro stimulation with lipopolysaccharide or respiratory-syncytial-virus (RSV) infection. To analyze lung leukocytes, specimens were digested with an adapted collagenase/DNase protocol yielding high percentages of viable leukocytes with typical morphology, function, and preserved subset specific leukocyte markers. Both protocols could be applied simultaneously in a single experimental mouse post mortem. Application of both digestion methods in primary human lung specimens yielded similar results with high proportions of Epcam+CD45- human AEC after dispase/DNase digestion and preservation of human T cell epitopes after collagenase/DNase digestion.The here described protocols were optimized for the simple and efficient isolation of murine and human lung cells. In contrast to previously described techniques, they permit simultaneous in-depth characterization of pulmonary epithelial cells and leukocyte subsets such as T helper, cytotoxic T, and B cells from one sample. As such, they may help to comprehensively and sustainably characterize murine and human lung specimens and facilitate studies on the role of lung immune cells in different respiratory pathologies.
- Published
- 2018
- Full Text
- View/download PDF