5 results on '"Anna Merino González"'
Search Results
2. Methodology for automatic classification of atypical lymphoid cells from peripheral blood cell images
- Author
-
Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Rodellar Benedé, José, Merino, Anna (Merino González), Alférez Baquero, Edwin Santiago, Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Rodellar Benedé, José, Merino, Anna (Merino González), and Alférez Baquero, Edwin Santiago
- Abstract
Morphological analysis is the starting point for the diagnostic approach of more than 80% of the hematological diseases. However, the morphological differentiation among different types of abnormal lymphoid cells in peripheral blood is a difficult task, which requires high experience and skill. Objective values do not exist to define cytological variables, which sometimes results in doubts on the correct cell classification in the daily hospital routine. Automated systems exist which are able to get an automatic preclassification of the normal blood cells, but fail in the automatic recognition of the abnormal lymphoid cells. The general objective of this thesis is to develop a complete methodology to automatically recognize images of normal and reactive lymphocytes, and several types of neoplastic lymphoid cells circulating in peripheral blood in some mature B-cell neoplasms using digital image processing methods. This objective follows two directions: (1) with engineering and mathematical background, transversal methodologies and software tools are developed; and (2) with a view towards the clinical laboratory diagnosis, a system prototype is built and validated, whose input is a set of pathological cell images from individual patients, and whose output is the automatic classification in one of the groups of the different pathologies included in the system. This thesis is the evolution of various works, starting with a discrimination between normal lymphocytes and two types of neoplastic lymphoid cells, and ending with the design of a system for the automatic recognition of normal lymphocytes and five types of neoplastic lymphoid cells. All this work involves the development of a robust segmentation methodology using color clustering, which is able to separate three regions of interest: cell, nucleus and peripheral zone around the cell. A complete lymphoid cell description is developed by extracting features related to size, shape, texture and color. To reduce the, Los análisis morfológicos son el punto de partida para la orientación diagnóstica en más del 80% de las enfermedades hematológicas. Sin embargo, la clasificación morfológica entre diferentes tipos de células linfoides anormales en la sangre es una tarea difícil que requiere gran experiencia y habilidad. No existen valores objetivos para definir variables citológicas, lo que en ocasiones genera dudas en la correcta clasificación de las células en la práctica diaria en un laboratorio clínico. Existen sistemas automáticos que realizan una preclasificación automática de las células sanguíneas, pero no son capaces de diferenciar automáticamente las células linfoides anormales. El objetivo general de esta tesis es el desarrollo de una metodología completa para el reconocimiento automático de imágenes de linfocitos normales y reactivos, y de varios tipos de células linfoides neoplásicas circulantes en sangre periférica en algunos tipos de neoplasias linfoides B maduras, usando métodos de procesamiento digital de imágenes. Este objetivo sigue dos direcciones: (1) con una orientación propia de la ingeniería y la matemática de soporte, se desarrollan las metodologías transversales y las herramientas de software para su implementación; y (2) con un enfoque orientado al diagnóstico desde el laboratorio clínico, se construye y se valida un prototipo de un sistema cuya entrada es un conjunto de imágenes de células patológicas de pacientes analizados de forma individual, obtenidas mediante microscopía y cámara digital, y cuya salida es la clasificación automática en uno de los grupos de las distintas patologías incluidas en el sistema. Esta tesis es el resultado de la evolución de varios trabajos, comenzando con una discriminación entre linfocitos normales y dos tipos de células linfoides neoplásicas, y terminando con el diseño de un sistema para el reconocimiento automático de linfocitos normales y reactivos, y cinco tipos de células linfoides neoplásicas. Todo este trabajo invol, Postprint (published version)
- Published
- 2015
3. Automatic recognition of different types of acute leukaemia using peripheral blood cell images
- Author
-
Boldú Nebot, Laura, Merino, Anna (Merino González), Rodellar, José, and Universitat de Barcelona. Facultat de Medicina i Ciències de la Salut
- Subjects
Automatic control ,Blood cells ,Leukemia ,Diagnòstic de laboratori ,Cèl·lules sanguínies ,Laboratory diagnosis ,Leucèmia ,Analysis of blood ,Anàlisi de sang ,Control automàtic - Abstract
[eng] Clinical pathologists have learned to identify morphological qualitative features to characterise the different normal cells, as well as the abnormal cell types whose presence in peripheral blood is the evidence of serious haematological diseases. A drawback of visual morphological analysis is that is time consuming, requires well-trained personnel and is prone to intra-observer variability, which is particularly true when dealing with blast cells. Indeed, subtle interclass morphological differences exist for leukaemia types, which turns into low specificity scores in the routine screening. They are well-known the difficulties that clinical pathologists have in the discrimination among different blasts and the subjectivity associated with their morphological recognition. The general objective of this thesis is the automatic recognition of different types of blast cells circulating in peripheral blood in acute leukaemia using digital image processing and machine learning techniques. In order to accomplish this objective, this thesis starts with a discrimination among normal mononuclear cells, reactive lymphocytes and three types of leukemic cells using traditional machine learning techniques and hand-crafted features obtained from cell segmentation. In the second part of the thesis, a new predictive system designed with two serially connected convolutional neural networks is developed for the diagnosis of acute leukaemia. This system was proved to distinguish neoplastic (leukaemia) and non-neoplastic (infections) diseases, as well as recognise the leukaemia lineage. Furthermore, it was evaluated for its integration in a real-clinical setting. This thesis also contributes in advancing the state of the art of the automatic recognition of acute leukaemia by providing a more realistic approach which reflects the real-life complexity of acute leukaemia diagnosis.
- Published
- 2021
4. Deep Learning System for the Automatic Classification of Normal and Dysplastic Peripheral Blood Cells as a Support Tool for the Diagnosis
- Author
-
Acevedo Lipes, Andrea Milena, Rodellar, José, Merino, Anna (Merino González), Universitat de Barcelona. Facultat de Medicina i Ciències de la Salut, and Sala Llonch, Roser
- Subjects
Blood cells ,Oncologia ,Diagnóstico ,Células sanguíneas ,Hematologic diseases ,Ciències de la Salut ,Oncología ,Clinical chemistry ,Química clínica ,Diagnòstic ,Oncology ,Xarxes neuronals convolucionals ,Redes neuronales convolucionales ,Cèl·lules sanguínies ,Malalties hematològiques ,Diagnosis ,Convolutional neural networks ,Enfermedades hematológicas - Abstract
[eng] Clinical pathologists identify visually many morphological features to characterize the different normal cells, as well as the abnormal cell types whose presence in peripheral blood is the evidence of serious diseases. Disadvantages of visual morphological analysis are that it is time consuming, needs expertise to perform an objective review of the smears and is prone to inter-observer variability. Also, most of the morphological descriptions are given in qualitative terms and there is a lack of quantitative measures. The general objective of this thesis is the automatic recognition of normal and dysplastic cells circulating in blood in myelodysplastic syndromes using convolutional neural networks and digital image processing techniques. In order to accomplish this objective, this work starts with the design and development of a Mysql database to store information and images from patients and the development of a first classifier of four groups of cells, using convolutional neural networks as feature extractors. Then, a high- quality dataset of around 17,000 images of normal blood cells is compiled and used for the development of a recognition system of eight groups of blood cells. In this work, we compare two transfer learning approaches to find the best to classify the different cell types. In the second part of the thesis, a new convolutional neural network model for the diagnosis of myelodysplastic syndromes is developed. This model was validated by means of a proof of concept. It is considered among the first models that have been built for diagnosis support. The final work of the thesis is the integration of two convolutional networks in a modular system for the automatic classification of normal and abnormal cells. The methodology and models developed constitute a step forward to the implementation of a modular system to recognize automatically all cell types in a real setup in the laboratory., [spa] Los especialistas de laboratorio identifican visualmente muchas características morfológicas para identificar las diferentes células normales, así como los tipos de células anormales, cuya presencia en sangre periférica es evidencia de enfermedades graves. Algunas de las desventajas del análisis morfológico visual incluyen que toma mucho tiempo, necesita experiencia para realizar una revisión objetiva de los frotis y es propenso a la variabilidad entre observadores. Además, la mayoría de las descripciones morfológicas se proporcionan en términos cualitativos. Debido a lo expuesto anteriormente, es necesario establecer medidas cuantitativas. El objetivo general de esta tesis es el reconocimiento automático de células normales y células displásicas circulantes en sangre en síndromes mielodisplásicos mediante redes neuronales convolucionales y técnicas de procesamiento digital de imágenes. Para lograr este objetivo, este trabajo comenzó con el diseño y desarrollo de una base de datos Mysql para almacenar información e imágenes de pacientes y el desarrollo de un primer clasificador de cuatro grupos de células, utilizando redes neuronales convolucionales como extractores de características. Luego, se compila un conjunto de datos de alta calidad de alrededor de 17.000 imágenes de células sanguíneas normales y se utiliza para el desarrollo de un sistema de reconocimiento de ocho grupos de células sanguíneas. En este trabajo, comparamos dos enfoques de aprendizaje por transferencia para encontrar el mejor para clasificar los diferentes tipos de células. En la segunda parte de la tesis se desarrolla un nuevo modelo de red neuronal convolucional para el diagnóstico de síndromes mielodisplásicos. Este modelo fue validado mediante prueba de concepto. Se considera uno de los primeros modelos que se han construido para apoyar el diagnóstico. El trabajo final de la tesis es la integración de dos redes convolucionales en un sistema modular para la clasificación automática de células normales y anormales. La metodología y los modelos desarrollados constituyen un paso adelante hacia la implementación de un sistema modular para reconocer automáticamente todos los tipos de células en una configuración real en el laboratorio.
- Published
- 2021
5. Methodology for automatic classification of atypical lymphoid cells from peripheral blood cell images
- Author
-
Alférez Baquero, Edwin Santiago|||0000-0001-8661-1096, Rodellar, José, Merino, Anna (Merino González), Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, and Rodellar Benedé, José
- Subjects
Informàtica [Àrees temàtiques de la UPC] ,Sang -- Malalties -- Diagnòstic -- Automatizació ,616.4 ,Reconeixement de formes (Informàtica) - Abstract
Morphological analysis is the starting point for the diagnostic approach of more than 80% of the hematological diseases. However, the morphological differentiation among different types of abnormal lymphoid cells in peripheral blood is a difficult task, which requires high experience and skill. Objective values do not exist to define cytological variables, which sometimes results in doubts on the correct cell classification in the daily hospital routine. Automated systems exist which are able to get an automatic preclassification of the normal blood cells, but fail in the automatic recognition of the abnormal lymphoid cells. The general objective of this thesis is to develop a complete methodology to automatically recognize images of normal and reactive lymphocytes, and several types of neoplastic lymphoid cells circulating in peripheral blood in some mature B-cell neoplasms using digital image processing methods. This objective follows two directions: (1) with engineering and mathematical background, transversal methodologies and software tools are developed; and (2) with a view towards the clinical laboratory diagnosis, a system prototype is built and validated, whose input is a set of pathological cell images from individual patients, and whose output is the automatic classification in one of the groups of the different pathologies included in the system. This thesis is the evolution of various works, starting with a discrimination between normal lymphocytes and two types of neoplastic lymphoid cells, and ending with the design of a system for the automatic recognition of normal lymphocytes and five types of neoplastic lymphoid cells. All this work involves the development of a robust segmentation methodology using color clustering, which is able to separate three regions of interest: cell, nucleus and peripheral zone around the cell. A complete lymphoid cell description is developed by extracting features related to size, shape, texture and color. To reduce the complexity of the process, a feature selection is performed using information theory. Then, several classifiers are implemented to automatically recognize different types of lymphoid cells. The best classification results are achieved using support vector machines with radial basis function kernel. The methodology developed, which combines medical, engineering and mathematical backgrounds, is the first step to design a practical hematological diagnosis support tool in the near future., Los análisis morfológicos son el punto de partida para la orientación diagnóstica en más del 80% de las enfermedades hematológicas. Sin embargo, la clasificación morfológica entre diferentes tipos de células linfoides anormales en la sangre es una tarea difícil que requiere gran experiencia y habilidad. No existen valores objetivos para definir variables citológicas, lo que en ocasiones genera dudas en la correcta clasificación de las células en la práctica diaria en un laboratorio clínico. Existen sistemas automáticos que realizan una preclasificación automática de las células sanguíneas, pero no son capaces de diferenciar automáticamente las células linfoides anormales. El objetivo general de esta tesis es el desarrollo de una metodología completa para el reconocimiento automático de imágenes de linfocitos normales y reactivos, y de varios tipos de células linfoides neoplásicas circulantes en sangre periférica en algunos tipos de neoplasias linfoides B maduras, usando métodos de procesamiento digital de imágenes. Este objetivo sigue dos direcciones: (1) con una orientación propia de la ingeniería y la matemática de soporte, se desarrollan las metodologías transversales y las herramientas de software para su implementación; y (2) con un enfoque orientado al diagnóstico desde el laboratorio clínico, se construye y se valida un prototipo de un sistema cuya entrada es un conjunto de imágenes de células patológicas de pacientes analizados de forma individual, obtenidas mediante microscopía y cámara digital, y cuya salida es la clasificación automática en uno de los grupos de las distintas patologías incluidas en el sistema. Esta tesis es el resultado de la evolución de varios trabajos, comenzando con una discriminación entre linfocitos normales y dos tipos de células linfoides neoplásicas, y terminando con el diseño de un sistema para el reconocimiento automático de linfocitos normales y reactivos, y cinco tipos de células linfoides neoplásicas. Todo este trabajo involucra el desarrollo de una metodología de segmentación robusta usando agrupamiento por color, la cual es capaz de separar tres regiones de interés: la célula, el núcleo y la zona externa alrededor de la célula. Se desarrolla una descripción completa de la célula linfoide mediante la extracción de descriptores relacionados con el tamaño, la forma, la textura y el color. Para reducir la complejidad del proceso, se realiza una selección de descriptores usando teoría de la información. Posteriormente, se implementan varios clasificadores para reconocer automáticamente diferentes tipos de células linfoides. Los mejores resultados de clasificación se logran utilizando máquinas de soporte vectorial con núcleo de base radial. La metodología desarrollada, que combina conocimientos médicos, matemáticos y de ingeniería, es el primer paso para el diseño de una herramienta práctica de soporte al diagnóstico hematológico en un futuro cercano.
- Published
- 2015
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.