Slimane Ait-Si-Ali, Marie Wattenhofer-Donzé, Marie-France Champy, Renaud Pourpre, Alice Lebreton, Goran Lakisic, Pascale Cossart, Morwenna Le Guillou, Hélène Bierne, Tania Sorg, Guillaume Soubigou, Emanuele Libertini, Anne C. Ferguson-Smith, Jean Feunteun, Jean-Yves Coppée, Elizabeth J. Radford, Olivia Wendling, MICrobiologie de l'ALImentation au Service de la Santé (MICALIS), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Interactions Bactéries-Cellules (UIBC), Institut National de la Recherche Agronomique (INRA)-Institut Pasteur [Paris] (IP)-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Clinique de la Souris (ICS), Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Transcriptome et Epigénome (PF2), Institut Pasteur [Paris] (IP), Cambridge University Hospitals - NHS (CUH), University of Cambridge [UK] (CAM), Stabilité Génétique et Oncogenèse (UMR 8200), Université Paris-Sud - Paris 11 (UP11)-Institut Gustave Roussy (IGR)-Centre National de la Recherche Scientifique (CNRS), Centre épigénétique et destin cellulaire (EDC), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Department of Genetics, French Ligue Nationale Contre le Cancer (comité régional d’Ile–de-France, LNCC RS10/75–76 and LNCC 131/12, INRA AO blanc MICA 2011, iXcore Fundation for Research, ANR-11-BSV3-0003,EPILIS,Reprogrammation épigénétique par la bactérie pathogène Listeria monocytogenes(2011), European Project: 670823,H2020,ERC-2014-ADG,BacCellEpi(2015), Institut National de la Recherche Agronomique (INRA)-Institut Pasteur [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Pasteur [Paris], Centre épigénétique et destin cellulaire (EDC (UMR_7216)), Lebreton, Alice, BLANC - Reprogrammation épigénétique par la bactérie pathogène Listeria monocytogenes - - EPILIS2011 - ANR-11-BSV3-0003 - BLANC - VALID, Bacterial, cellular and epigenetic factors that control enteropathogenicity - BacCellEpi - - H20202015-10-01 - 2018-09-30 - 670823 - VALID, Bierne, Hélène, Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Pasteur [Paris]-Institut National de la Recherche Agronomique (INRA), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Radford, Elizabeth [0000-0002-8336-6045], Ferguson-Smith, Anne [0000-0003-4996-9990], and Apollo - University of Cambridge Repository
BAHD1 is a vertebrate protein that promotes heterochromatin formation and gene repression in association with several epigenetic regulators. However, its physiological roles remain unknown. Here, we demonstrate that ablation of the Bahd1 gene results in hypocholesterolemia, hypoglycemia and decreased body fat in mice. It also causes placental growth restriction with a drop of trophoblast glycogen cells, a reduction of fetal weight and a high neonatal mortality rate. By intersecting transcriptome data from murine Bahd1 knockout (KO) placentas at stages E16.5 and E18.5 of gestation, Bahd1-KO embryonic fibroblasts, and human cells stably expressing BAHD1, we also show that changes in BAHD1 levels alter expression of steroid/lipid metabolism genes. Biochemical analysis of the BAHD1-associated multiprotein complex identifies MIER proteins as novel partners of BAHD1 and suggests that BAHD1-MIER interaction forms a hub for histone deacetylases and methyltransferases, chromatin readers and transcription factors. We further show that overexpression of BAHD1 leads to an increase of MIER1 enrichment on the inactive X chromosome (Xi). In addition, BAHD1 and MIER1/3 repress expression of the steroid hormone receptor genes ESR1 and PGR, both playing important roles in placental development and energy metabolism. Moreover, modulation of BAHD1 expression in HEK293 cells triggers epigenetic changes at the ESR1 locus. Together, these results identify BAHD1 as a core component of a chromatin-repressive complex regulating placental morphogenesis and body fat storage and suggest that its dysfunction may contribute to several human diseases., Author Summary The importance of epigenetics in regulation and dysfunction of metabolic pathways is increasingly recognized but the underlying mechanisms and molecular actors involved remain incompletely characterized. Here, we provide evidence that the heterochromatinization factor BAHD1 cooperates with MIER proteins to assemble chromatin-repressive complexes that control a network of metabolic genes involved in placental and fetal growth and in cholesterol homeostasis.