Glyphosate (GS), the active ingredient of the popular herbicide Roundup, inhibits the 5-enolpyruvyl shikimate-3-phosphate (EPSP) synthase of the shikimate pathway, which is present in archaea, bacteria, Apicomplexa, algae, fungi, and plants. In these organisms, the shikimate pathway is essential for de novo synthesis of aromatic amino acids, folates, quinones and other metabolites. Therefore, the GS-dependent inhibition of the EPSP synthase results in cell death. Previously, it has been observed that isolates of the soil bacteria Burkholderia anthina and Burkholderia cenocepacia are resistant to high amounts of GS. In the framework of this PhD thesis, it could be demonstrated that B. anthina isolates are not intrinsically resistant to GS. However, B. anthina rapidly adapts to the herbicide at the genome level and the characterization of GS-resistant suppressor mutants led to the discovery of a novel GS resistance mechanism. In B. anthina, the acquisition of loss-of-function mutations in the ppsR gene increases GS resistance. The ppsR gene encodes a regulator of the phosphoenolpyruvate (PEP) synthetase PpsA. In the absence of a functional PpsR protein, the bacteria synthesize more PEP, which competes with GS for binding in the active site of the EPSP synthase, increasing GS resistance. The EPSP synthase in B. anthina probably does not allow changes in the amino acid sequence as it is the case in other organisms. Indeed, the Gram-negative model organism Escherichia coli evolves GS resistance by the acquisition of mutations that either reduce the sensitivity of the EPSP synthase or increase the cellular concentration of the enzyme. Unlike E. coli, the EPSP synthase is also critical for the viability of Gram-positive model bacterium Bacillus subtilis. This observation is surprising because the enzyme belongs to the class of GS-insensitive EPSP synthases. In fact, the EPSP synthase is essential for growth of B. subtilis. The determination of the nutritional requirements, Glyphosat (GS), der Wirkstoff der häufig verwendeten Herbizidformulierung Roundup, hemmt die 5-Enoylpyruvyl-Shikimat-3-Phosphat-(EPSP)-Synthase des Shikimat-Wegs, welcher in Archaen, Bakterien, Apicomplexa, Bakterien, Algen. Pilzen und Pflanzen vorkommt. In diesen Organismen ist der Shikimat-Weg für die de novo-Synthese der aromatischen Aminosäuren, Folaten, Chinonen und anderen Metaboliten unerlässlich. Es wurde bereits berichtet, dass Isolate der Bodenbakterien Burkholderia anthina und Burkholderia cenocepacia in Gegenwart hoher Mengen an GS wachsen können. Im Rahmen dieser Doktorarbeit konnte gezeigt werden, dass B. anthina-Isolate nicht intrinsisch resistent gegenüber GS sind. Allerdings passt sich B. anthina auf Genomebene schnell an das Herbizid an und die Charakterisierung von GS-resistenten Suppressormutanten führte zu der Entdeckung eines neuen GS-Resistenzmechanismus. Bei B. anthina erhöht die Inaktivierung des ppsR-Gens die Resistenz gegenüber GS. Das ppsR-Gen kodiert für einen Regulator der Phosphoenolpyruvat-(PEP)-Synthetase PpsA. In Abwesenheit eines funktionalen PpsR-Proteins synthetisieren die Bakterien mehr PEP, welches mit GS um Bindung an das aktive Zentrum der EPSP-Synthase konkurriert und somit die GS-Resistenz erhöht. Im Gegensatz zu anderen Organismen lässt die EPSP-Synthase von B. anthina wahrscheinlich keine Veränderungen der Aminosäuresequenz zu. Tatsächlich passt sich der Gram-negative Modellorganismus Escherichia coli durch die Anreicherung von Mutationen, die die Sensitivität der EPSP-Synthase verringern oder die zelluläre Konzentration des Enzyms erhöhen. Im Gegensatz zu E. coli ist die EPSP-Synthase für die Lebensfähigkeit des Gram-positiven Modellbakteriums Bacillus subtilis essenziell. Diese Beobachtung ist überraschend, da das Enzym zur Klasse der GS-unempfindlichen EPSP-Synthasen gehört. Die Bestimmung der Nährstoffansprüche, welche das Wachstum der B. subtilis und E. coli Mutanten ohne EPSP-Synthaseaktivität ermöglicht, ergab, das