8 results on '"Anthéa Mayzaud"'
Search Results
2. Detecting version number attacks in RPL-based networks using a distributed monitoring architecture.
- Author
-
Anthéa Mayzaud, Remi Badonnel, and Isabelle Chrisment
- Published
- 2016
- Full Text
- View/download PDF
3. Addressing DODAG inconsistency attacks in RPL networks.
- Author
-
Anuj Sehgal, Anthéa Mayzaud, Remi Badonnel, Isabelle Chrisment, and Jürgen Schönwälder
- Published
- 2014
- Full Text
- View/download PDF
4. A Study of RPL DODAG Version Attacks.
- Author
-
Anthéa Mayzaud, Anuj Sehgal, Remi Badonnel, Isabelle Chrisment, and Jürgen Schönwälder
- Published
- 2014
- Full Text
- View/download PDF
5. Monitoring and Security for the Internet of Things.
- Author
-
Anthéa Mayzaud, Remi Badonnel, and Isabelle Chrisment
- Published
- 2013
- Full Text
- View/download PDF
6. A Distributed Monitoring Strategy for Detecting Version Number Attacks in RPL-Based Networks
- Author
-
Isabelle Chrisment, Anthéa Mayzaud, Rémi Badonnel, Management of dynamic networks and services (MADYNES), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Networks, Systems and Services (LORIA - NSS), Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Department of Networks, Systems and Services (LORIA - NSS), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), and Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)
- Subjects
Routing protocol ,Exploit ,Computer Networks and Communications ,business.industry ,Computer science ,Node (networking) ,Distributed computing ,020206 networking & telecommunications ,02 engineering and technology ,Network topology ,Maintenance engineering ,[INFO.INFO-NI]Computer Science [cs]/Networking and Internet Architecture [cs.NI] ,Scalability ,0202 electrical engineering, electronic engineering, information engineering ,020201 artificial intelligence & image processing ,Electrical and Electronic Engineering ,Routing (electronic design automation) ,business ,Protocol (object-oriented programming) ,Computer network - Abstract
International audience; The Internet of Things is characterized by the large-scale deployment of low power and lossy networks (LLN), interconnecting pervasive objects. The routing protocol for LLN (RPL) protocol has been standardized by IETF to enable a lightweight and robust routing in these constrained networks. A versioning mechanism is incorporated into RPL in order to maintain an optimized topology. However, an attacker can exploit this mechanism to significantly damage the network and reduce its lifetime. After analyzing and comparing existing work, we propose in this paper a monitoring strategy with dedicated algorithms for detecting such attacks and identifying the involved malicious nodes. The performance of this solution is evaluated through extensive experiments, and its scalability is quantified with the support of a monitoring node placement optimization method.
- Published
- 2017
7. Using the RPL Protocol for Supporting Passive Monitoring in the Internet of Things
- Author
-
Rémi Badonnel, Jürgen Schönwälder, Anthéa Mayzaud, Isabelle Chrisment, Anuj Sehgal, Management of dynamic networks and services (MADYNES), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Networks, Systems and Services (LORIA - NSS), Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL), Jacobs University [Bremen], European Project: 318488,EC:FP7:ICT,FP7-ICT-2011-8,FLAMINGO(2012), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), and Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Routing protocol ,Exploit ,Computer science ,business.industry ,010401 analytical chemistry ,Passive monitoring ,020206 networking & telecommunications ,02 engineering and technology ,Network monitoring ,Network topology ,Flow network ,01 natural sciences ,0104 chemical sciences ,[INFO.INFO-NI]Computer Science [cs]/Networking and Internet Architecture [cs.NI] ,0202 electrical engineering, electronic engineering, information engineering ,Anomaly detection ,business ,Protocol (object-oriented programming) ,Computer network - Abstract
International audience; Most devices deployed in the Internet of Things (IoT) are expected to suffer from resource constraints. Using specialized tools on such devices for monitoring IoT networks would take away precious resources that could otherwise be dedicated towards their primary task. In many IoT applications such as Advanced Metering Infrastructure (AMI) networks, higher order devices are expected to form the backbone infrastructure, to which the constrained nodes would connect. It would, as such, make sense to exploit the capabilities of these higher order devices to perform network monitoring tasks. We propose in this paper a distributed monitoring architecture that takes benefits from specificities of the IoT routing protocol RPL to passively monitor events and network flows without having impact upon the resource constrained nodes. We describe the underlying mechanisms of this architecture, quantify its performances through a set of experiments using the Cooja environment. We also evaluate its benefits and limits through a use case scenario dedicated to anomaly detection.
- Published
- 2016
8. Mitigation of Topological Inconsistency Attacks in RPL based Low Power Lossy Networks
- Author
-
Jürgen Schönwälder, Isabelle Chrisment, Anthéa Mayzaud, Anuj Sehgal, Rémi Badonnel, Management of dynamic networks and services (MADYNES), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Networks, Systems and Services (LORIA - NSS), Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Jacobs University [Bremen], and European Project: 318488,EC:FP7:ICT,FP7-ICT-2011-8,FLAMINGO(2012)
- Subjects
Routing protocol ,Computer Networks and Communications ,Computer science ,business.industry ,Network packet ,Node (networking) ,Denial-of-service attack ,Energy consumption ,Lossy compression ,Topology ,Computer Science Applications ,[INFO.INFO-NI]Computer Science [cs]/Networking and Internet Architecture [cs.NI] ,Header ,Overhead (computing) ,business ,Computer network - Abstract
The RPL is a routing protocol for low-power and lossy networks. A malicious node can manipulate header options used by RPL to create topological inconsistencies, thereby causing denial of service attacks, reducing channel availability, increasing control message overhead, and increasing energy consumption at the targeted node and its neighborhood. RPL overcomes these topological inconsistencies via a fixed threshold, upon reaching which all subsequent packets with erroneous header options are ignored. However, this threshold value is arbitrarily chosen, and the performance can be improved by taking into account network characteristics. To address this, we present a mitigation strategy that allows nodes to dynamically adapt against a topological inconsistency attack based on the current network conditions. Results from our experiments show that our approach outperforms the fixed threshold and mitigates these attacks without significant overhead. Copyright © 2015John Wiley & Sons, Ltd.
- Published
- 2015
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.