1. DoPAMine: Domain-specific Pre-training Adaptation from seed-guided data Mining
- Author
-
Arannil, Vinayak, Narwal, Neha, Bhabesh, Sourav Sanjukta, Thirandas, Sai Nikhil, Wang, Darren Yow-Bang, Horwood, Graham, Chirayath, Alex Anto, and Pandeshwar, Gouri
- Subjects
Computer Science - Computation and Language ,Computer Science - Artificial Intelligence ,Computer Science - Machine Learning - Abstract
Large Language Models (LLMs) have shown remarkable ability to generalize effectively across numerous industry domains while executing a range of tasks. Many of these competencies are obtained from the data utilized during the pre-training phase of the Language Models (LMs). However, these models exhibit limitations when tasked with performing in specialized or low-resource industry domains. More recent approaches use LLMs for generating domain-specific synthetic data but most often they lack in truthfulness and complexity. Alternatively, in cases where domain data is available like healthcare and finance most of the LMs are proprietary necessitating the need for a scalable method to curate real world industry specific pre-training data. In this work, we propose an automated and scalable framework - DoPAMine:Domain-specific Pre-training Adaptation from seed-guided data Mining, to mine domain specific training data from a large data corpus for domain adaptation of a LM. The framework leverages the parametric knowledge of a LLM to generate diverse and representative seed data tailored to a specific domain which is then used to mine real world data from a large data corpus like Common Crawl. We evaluated our framework's performance in the continual pre-training (CPT) setting by training two domain specific 7B parameter LMs in healthcare and finance with data mined via DoPAMine. Our experiments show that DoPAMine boosts the performance of pre-trained LLMs on average by 4.9% and 5.1% in zero-shot and 5-shot settings respectively on healthcare tasks from MMLU, MedQA, MedMCQA and PubMedQA datasets, and 2.9% and 6.7% for zero-shot and 5-shot settings respectively on finance tasks from FiQA-SA, FPB and Headlines datasets when compared to the baseline.
- Published
- 2024