11 results on '"Aouni, Jihane"'
Search Results
2. Utility-Based Dose Selection for Phase II Dose-Finding Studies
- Author
-
Aouni, Jihane, Bacro, Jean Noel, Toulemonde, Gwladys, Colin, Pierre, and Darchy, Loic
- Published
- 2021
- Full Text
- View/download PDF
3. Randomized Phase III Study of Amcenestrant Plus Palbociclib Versus Letrozole Plus Palbociclib in Estrogen Receptor–Positive, Human Epidermal Growth Factor Receptor 2–Negative Advanced Breast Cancer: Primary Results From AMEERA-5.
- Author
-
Cortés, Javier, Hurvitz, Sara A., O'Shaughnessy, Joyce, Delaloge, Suzette, Iwata, Hiroji, Rugo, Hope S., Neven, Patrick, Kanagavel, Dheepak, Cohen, Patrick, Paux, Gautier, Cartot-Cotton, Sylvaine, Stefanova-Urena, Maya, Deyme, Laure, Aouni, Jihane, Sebastien, Bernard, and Bardia, Aditya
- Published
- 2024
- Full Text
- View/download PDF
4. On the use of utility functions for optimizing phase II/phase III seamless trial designs
- Author
-
Aouni, Jihane, Bacro, Jean, Toulemonde, Gwladys, Colin, Pierre, Darchy, Loic, Sébastien, Bernard, Institut Montpelliérain Alexander Grothendieck (IMAG), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Sanofi Aventis R&D [Chilly-Mazarin], Université de Montpellier (UM), Centre National de la Recherche Scientifique (CNRS), Littoral, Environment: MOdels and Numerics (LEMON), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Montpelliérain Alexander Grothendieck (IMAG), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Hydrosciences Montpellier (HSM), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Littoral, Environnement : Méthodes et Outils Numériques (LEMON), and Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Subjects
[STAT]Statistics [stat] ,Design optimisation ,Adaptive trials ,Utility function ,Seamless design ,Dose selection ,[SDV.SP]Life Sciences [q-bio]/Pharmaceutical sciences ,Patient allocation - Abstract
International audience; Background: For several years adaptive designs became more and more popular in the pharmaceutical industry and in particular much attention was brought on adaptive seamless designs. Those designs combine the phase II dose finding trial and the phase III confirmatory trial in a single protocol (with a fixed total sample size). The objective of this paper is to propose some utility-based tools to optimize those designs: first in terms of ratio between phase II and phase III sample sizes, and, second, in patient allocation to doses at the beginning of phase II. Methods: Design optimization methods are generally based either on Fisher information matrix (D-optimality) or on the variance of some statistics of interest (C-optimality). Instead, we propose to define utility functions associated to sponsors' decision related to choice of dose for the phase III and we propose design optimization metrics based on the expected value of this utility. Results and Conclusions: After reviewing and discussing several kinds of utility functions, we focused on two of them, that we have assessed through simulations. We concluded that in most of the scenarios simulated, the expected utility was in a sense more sensitive to the timing of the interim analysis (ratio between phase II over total sample size) than on the patients allocation between the doses. This result points out the fact that it might be necessary to enroll a larger number of patients in phase II to allow an accurate identification of the optimal dose.
- Published
- 2021
- Full Text
- View/download PDF
5. Matching‐adjusted indirect comparisons: Application to time‐to‐event data
- Author
-
Aouni, Jihane, primary, Gaudel‐Dedieu, Nadia, additional, and Sebastien, Bernard, additional
- Published
- 2020
- Full Text
- View/download PDF
6. Design optimization for dose-finding trials: a review
- Author
-
Aouni, Jihane, primary, Bacro, Jean Noel, additional, Toulemonde, Gwladys, additional, Colin, Pierre, additional, Darchy, Loic, additional, and Sebastien, Bernard, additional
- Published
- 2020
- Full Text
- View/download PDF
7. Optimisation de la phase II/III d'un développement clinique basée sur l'utilité
- Author
-
Aouni, Jihane, Institut Montpelliérain Alexander Grothendieck (IMAG), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Université Montpellier, and Jean-Noël Bacro
- Subjects
Adaptive trials ,Utility function ,[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST] ,Sélection de dose ,Bayesian approach ,Interim analysis ,Essais adaptatifs ,Fonction d'utilité ,Analyses intermédiares ,Dose selection ,Approche bayésienne - Abstract
The main development of the thesis was devoted to the problem of dose choice optimization in dose-finding trials, in phase II. We have considered this problem from the perspective of utility functions. We have allocated a utility value to the doses itself, knowing that the sponsor’s problem was now to find the best dose, that is to say, the one having the highest utility. We have limited ourselves to a single utility function, integrating two components: an efficacy-related component (the PoS = the power of a phase III trial - with 1000 patients - of this dose versus placebo) and a safety-related component. For the latter, we chose to characterize it by the predictive probability of observing a toxicity rate lower or equal to a given threshold (that we set to 0.15) in phase III (still for a trial of 1000 patients in total). This approach has the advantage of being similar to the concepts used in phase I trials in Oncology, which particularly aim to find the dose related to a limiting toxicity (notion of "Dose limiting Toxicity").We have adopted a Bayesian approach for the analysis of phase II data. Apart from the known theoretical advantages of the Bayesian approach compared with the frequentist approach (respect of the likelihood principle, less dependency on asymptotic results, robustness), we chose this approach for several reasons:• It provides a more flexible framework for the decision-making of the sponsor because it offers the possibility to combine (by definition of the Bayesian approach) a priori information with the available data: in particular, it offers the possibility to integrate, more or less explicitly, the information available outside the phase II trial.• The Bayesian approach allows greater flexibility in the formalization of the decision rules.We studied the properties of decision rules by simulating phase II trials of different sizes: 250, 500 and 1000 patients. For the last two designs (500 and 1000 patients in phase II), we have also evaluated the interest of performing an interim analysis when half of the patients are enrolled (i.e. with the first 250and the first 500 patients included respectively). The purpose was then to evaluate whether or not, for larger phase II trials, allowing the possibility of choosing the dose in the middle of the study and continuing the study to the end if the interim analysis is not conclusive, could reduce the size of the phase II trial while preserving the relevance of the final dose choice.; Le développement majeur de la thèse a été consacré au problème d’optimisation du choix de dose dans les essais de recherche de dose, en phase II. Nous avons considéré ce problème sous l’angle des fonctions d’utilité. Nous avons alloué une valeur d’utilité aux doses, le problème pour le sponsor étant de trouver la meilleure dose, c’est-à-dire celle dont l’utilité est la plus élevée.Dans ce travail, nous nous sommes limités à une seule fonction d’utilité, intégrant deux composantes: une composante liée à l’efficacité (la POS=puissance d’un essai de phase III de 1000 patients de cette dose contre placebo) et une autre liée à la safety. Pour cette dernière, nous avons choisi de la caractériser par la probabilité prédictive d’observer un taux de toxicité inférieur ou égal à un certain seuil (que nous avons fixé à 0.15) en phase III (toujours pour un essai de 1000 patients au total). Cette approche a l’avantage d’être similaire aux concepts utilisés dans les essais de phase I en oncologie qui ont notamment pour objectif la recherche de la dose liée à une toxicité limite (notion de ”Dose limiting Toxicity”).Nous avons retenu une approche bayésienne pour l’analyse des données de la phase II.Mis à part les avantages théoriques connus de l’approche bayésienne par rapport à l’approche fréquentiste (respect du principe de vraisemblance, dépendance moins grande aux résultats asymptotiques, robustesse), nous avons choisi l’approche bayésienne pour plusieurs raisons:• Combinant, par définition même de l’approche bayésienne, une information a priori avec les données disponibles, elle offre un cadre plus flexible la prise de décision du sponsor: lui permettant notamment d’intégrer de manière plus ou moins explicite les informations dont il dispose en dehors de l’essai de la phase II.• L’approche bayésienne autorise une plus grande flexibilité dans la formalisation des règles de décision.Nous avons étudié les propriétés des règles de décisions par simulation d’essais de phase II de différentes tailles: 250, 500 et 1000 patients. Pour ces deux derniers design nous avons aussi évalué l’intérêt de d’effectuer une analyse intermédiaire lorsque la moitié des patients a été enrôlée (c’est-à-dire avec respectivement les premiers 250 et 500 patients inclus). Le but était alors d’évaluer si, pour les essais de phase II de plus grande taille, s’autoriser la possibilité de choisir la dose au milieu de l’étude et de poursuivre l’étude jusqu’au bout si l’analyse intermédiaire n’est pas concluante permettait de réduire la taille de l’essai de phase II tout en préservant la pertinence du choix de dose final.
- Published
- 2019
8. Utility-Based Dose-Finding in Practice: Some Empirical Contributions and Recommendations
- Author
-
Aouni, Jihane, Bacro, Jean-Nöel, Toulemonde, Gwladys, Sébastien, Bernard, Institut Montpelliérain Alexander Grothendieck (IMAG), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM), Centre National de la Recherche Scientifique (CNRS), Littoral, Environnement : Méthodes et Outils Numériques (LEMON), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), SANOFI Recherche, Littoral, Environment: MOdels and Numerics (LEMON), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Montpelliérain Alexander Grothendieck (IMAG), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Hydrosciences Montpellier (HSM), and Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
medicine.medical_specialty ,Computer science ,05 social sciences ,01 natural sciences ,050105 experimental psychology ,010104 statistics & probability ,Dose finding ,[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST] ,Genetics ,medicine ,0501 psychology and cognitive sciences ,Animal Science and Zoology ,Medical physics ,0101 mathematics ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2019
- Full Text
- View/download PDF
9. Assessing dunnett and mcp-mod based approaches in two-stage dose-finding trials
- Author
-
Aouni, Jihane, Bacro, Jean Noel, Toulemonde, Gwladys, Colin, Pierre, Darchy, Loic, Sebastien, Bernard, Institut Montpelliérain Alexander Grothendieck (IMAG), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM), Centre National de la Recherche Scientifique (CNRS), Littoral, Environnement : Méthodes et Outils Numériques (LEMON), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Sanofi Aventis R&D [Chilly-Mazarin], Littoral, Environment: MOdels and Numerics (LEMON), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Montpelliérain Alexander Grothendieck (IMAG), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Hydrosciences Montpellier (HSM), and Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[STAT.ME]Statistics [stat]/Methodology [stat.ME] ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2019
- Full Text
- View/download PDF
10. Évaluation des approches basées sur le test de Dunnett et MCP-Mod dans des essais de détermination de dose en deux étapes
- Author
-
AOUNI, Jihane, primary, BACRO, Jean Noel, additional, TOULEMONDE, Gwladys, additional, COLIN, Pierre, additional, DARCHY, Loic, additional, and SEBASTIEN, Bernard, additional
- Published
- 2019
- Full Text
- View/download PDF
11. Matching‐adjusted indirect comparisons: Application to time‐to‐event data.
- Author
-
Aouni, Jihane, Gaudel‐Dedieu, Nadia, and Sebastien, Bernard
- Abstract
The Matching‐Adjusted Indirect Comparison method (MAIC) is a recent methodology that allows to perform indirect comparisons between two drugs assessed in two different studies, where individual patients data are available in only one of the two studies, the data of the other one being available in an aggregate format only. In this work, we have assessed the properties of the MAIC method and compared, through simulations, several ways of practical implementation of the method. We conclude that it is more efficient to match the treatment arms separately (match the two drugs to compare on one hand, and the control arms on the other hand) and use the Lasso technique to select the covariates for the matching step is better than matching a maximal set of covariates. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.