Stefan Kraus, Eric Lagadec, E. Cannon, Florentin Millour, Guy Perrin, A. de Koter, John D. Monnier, Andrea Chiavassa, Xavier Haubois, Claudia Paladini, Narsireddy Anugu, Peter Scicluna, Andrea K. Dupree, L. Decin, Philippe Stee, Bruno Lopez, Gioia Rau, M. Montargès, William C. Danchi, K. Kravchenko, S. T. Ridgway, Ryan P. Norris, J. Sanchez-Bermudez, Pierre Kervella, Faustine Cantalloube, J-B. Le Bouquin, Markus Wittkowski, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Instituut voor Sterrenkunde [Leuven], Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven), Laboratoire Lagrange, Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS., Anton Pannenkoek Institute for Astronomy [University of Amsterdam], University of Amsterdam [Amsterdam] (UvA), Max Planck Institute for Astronomy (MPIA), Instituto de Astronomía, Univ. Nacional Autónoma de México, Universidad Nacional Autónoma de México (UNAM), European Southern Observatory [Santiago] (ESO), European Southern Observatory (ESO), School of Chemistry [Leeds], University of Leeds, Max Planck Institute for Extraterrestrial Physics (MPE), Max-Planck-Gesellschaft, Harvard-Smithsonian Center for Astrophysics (CfA), Smithsonian Institution-Harvard University [Cambridge], NSF’s National Optical-Infrared Astronomy Research Laboratory (NOIRLab), Steward Observatory, University of Arizona, School of Physics and Astronomy [Exeter], University of Exeter, Physics Department [New Mexico Institute of Mining and Technology], New Mexico Institute of Mining and Technology [New Mexico Tech] (NMT), GSFC Exoplanets and Stellar Astrophysics Laboratory, NASA Goddard Space Flight Center (GSFC), Department of Physics [Catholic University of America], Catholic University of America, Joseph Louis LAGRANGE (LAGRANGE), Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Department of Astronomy University of Michigan, University of Michigan [Ann Arbor], University of Michigan System-University of Michigan System, Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA), Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), and Low Energy Astrophysics (API, FNWI)
Red supergiants are the most common final evolutionary stage of stars that have initial masses between 8 and 35 times that of the Sun1. During this stage, which lasts roughly 100,000 years1, red supergiants experience substantial mass loss. However, the mechanism for this mass loss is unknown2. Mass loss may affect the evolutionary path, collapse and future supernova light curve3 of a red supergiant, and its ultimate fate as either a neutron star or a black hole4. From November 2019 to March 2020, Betelgeuse—the second-closest red supergiant to Earth (roughly 220 parsecs, or 724 light years, away)5,6—experienced a historic dimming of its visible brightness. Usually having an apparent magnitude between 0.1 and 1.0, its visual brightness decreased to 1.614 ± 0.008 magnitudes around 7–13 February 20207—an event referred to as Betelgeuse’s Great Dimming. Here we report high-angular-resolution observations showing that the southern hemisphere of Betelgeuse was ten times darker than usual in the visible spectrum during its Great Dimming. Observations and modelling support a scenario in which a dust clump formed recently in the vicinity of the star, owing to a local temperature decrease in a cool patch that appeared on the photosphere. The directly imaged brightness variations of Betelgeuse evolved on a timescale of weeks. Our findings suggest that a component of mass loss from red supergiants8 is inhomogeneous, linked to a very contrasted and rapidly changing photosphere. The southern hemisphere of Betelgeuse during its Great Dimming was an order of magnitude darker than usual, owing to a cool patch on the photosphere and associated dust formation.