Descoteaux, Maxime, Legarreta Gorroño, Jon Haitz, Jodoin, Pierre-Marc, Descoteaux, Maxime, Legarreta Gorroño, Jon Haitz, and Jodoin, Pierre-Marc
L'imagerie par résonance magnétique de diffusion est une technique non invasive permettant de connaître la microstructure organisationnelle des tissus biologiques. Les méthodes computationnelles qui exploitent la préférence orientationnelle de la diffusion dans des structures restreintes pour révéler les voies axonales de la matière blanche du cerveau sont appelées tractographie. Ces dernières années, diverses méthodes de tractographie ont été utilisées avec succès pour découvrir l'architecture de la matière blanche du cerveau. Pourtant, ces techniques de reconstruction souffrent d'un certain nombre de défauts dérivés d'ambiguïtés fondamentales liées à l'information orientationnelle. Cela a des conséquences dramatiques, puisque les cartes de connectivité de la matière blanche basées sur la tractographie sont dominées par des faux positifs. Ainsi, la grande proportion de voies invalides récupérées demeure un des principaux défis à résoudre par la tractographie pour obtenir une description anatomique fiable de la matière blanche. Des approches méthodologiques innovantes sont nécessaires pour aider à résoudre ces questions. Les progrès récents en termes de puissance de calcul et de disponibilité des données ont rendu possible l'application réussie des approches modernes d'apprentissage automatique à une variété de problèmes, y compris les tâches de vision par ordinateur et d'analyse d'images. Ces méthodes modélisent et trouvent les motifs sous-jacents dans les données, et permettent de faire des prédictions sur de nouvelles données. De même, elles peuvent permettre d'obtenir des représentations compactes des caractéristiques intrinsèques des données d'intérêt. Les approches modernes basées sur les données, regroupées sous la famille des méthodes d'apprentissage profond, sont adoptées pour résoudre des tâches d'analyse de données d'imagerie médicale, y compris la tractographie. Dans ce contexte, les méthodes deviennent moins dépendantes des contraintes imposées par les, Diffusion magnetic resonance imaging is a non-invasive technique providing insights into the organizational microstructure of biological tissues. The computational methods that exploit the orientational preference of the diffusion in restricted structures to reveal the brain's white matter axonal pathways are called tractography. In recent years, a variety of tractography methods have been successfully used to uncover the brain's white matter architecture. Yet, these reconstruction techniques suffer from a number of shortcomings derived from fundamental ambiguities inherent to the orientation information. This has dramatic consequences, since current tractography-based white matter connectivity maps are dominated by false positive connections. Thus, the large proportion of invalid pathways recovered remains one of the main challenges to be solved by tractography to obtain a reliable anatomical description of the white matter. Methodological innovative approaches are required to help solving these questions. Recent advances in computational power and data availability have made it possible to successfully apply modern machine learning approaches to a variety of problems, including computer vision and image analysis tasks. These methods model and learn the underlying patterns in the data, and allow making accurate predictions on new data. Similarly, they may enable to obtain compact representations of the intrinsic features of the data of interest. Modern data-driven approaches, grouped under the family of deep learning methods, are being adopted to solve medical imaging data analysis tasks, including tractography. In this context, the proposed methods are less dependent on the constraints imposed by current tractography approaches. Hence, deep learning-inspired methods are suit for the required paradigm shift, may open new modeling possibilities, and thus improve the state of the art in tractography. In this thesis, a new paradigm based on representation l