Stepanenko, Iryna, Mizetskyi, Pavlo, Orlowska, Ewelina, Bučinský, Lukáš, Zalibera, Michal, Vénosová, Barbora, Clémancey, Martin, Blondin, Geneviève, Rapta, Peter, Novitchi, Ghenadie, Schrader, Wolfgang, Schaniel, Dominik, Chen, Yu-sheng, Lutz, Martin, Kožíšek, Jozef, Telser, Joshua, Arion, Vladimir B., Sub Structural Biochemistry, Structural Biochemistry, Institute of Inorganic Chemistry [University of Vienna], University of Vienna [Vienna], Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Department of Physics, Faculty of Science, University of Ostrava, Physiochimie des Métaux (PMB), Laboratoire de Chimie et Biologie des Métaux (LCBM - UMR 5249), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Laboratoire national des champs magnétiques intenses - Grenoble (LNCMI-G ), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Max-Planck-Institut für Gesellschaftsforschung (MPIfG), Max-Planck-Gesellschaft, Cristallographie, Résonance Magnétique et Modélisations (CRM2), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL), NSF’s ChemMATCARS, The University of Chicago, Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Department of Biological, Physical and Health Sciences, Roosevelt University, Slovak University of Technology in Bratislava, Ostravská univerzita / University of Ostrava, Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Max-Planck-Institut für Kohlenforschung (Coal Research), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), University of Chicago, Utrecht University [Utrecht], Roosevelt University [Chicago], Sub Structural Biochemistry, and Structural Biochemistry
The ruthenium nitrosyl moiety, {RuNO}6, is important as a potential releasing agent of nitric oxide and is of inherent interest in coordination chemistry. Typically, {RuNO}6 is found in mononuclear complexes. Herein we describe the synthesis and characterization of several multimetal cluster complexes that contain this unit. Specifically, the heterotrinuclear μ3-oxido clusters [Fe2RuCl4(μ3-O)(μ-OMe)(μ-pz)2(NO)(Hpz)2] (6) and [Fe2RuCl3(μ3-O)(μ-OMe)(μ-pz)3(MeOH)(NO)(Hpz)][Fe2RuCl3(μ3-O)(μ-OMe)(μ-pz)3(DMF)(NO)(Hpz)] (7·MeOH·2H2O) and the heterotetranuclear μ4-oxido complex [Ga3RuCl3(μ4-O)(μ-OMe)3(μ-pz)4(NO)] (8) were prepared from trans-[Ru(OH)(NO)(Hpz)4]Cl2 (5), which itself was prepared via acidic hydrolysis of the linear heterotrinuclear complex {[Ru(μ-OH)(μ-pz)2(pz)(NO)(Hpz)]2Mg} (4). Complex 4 was synthesized from the mononuclear Ru complexes (H2pz)[trans-RuCl4(Hpz)2] (1), trans-[RuCl2(Hpz)4]Cl (2), and trans-[RuCl2(Hpz)4] (3). The new compounds 4–8 were all characterized by elemental analysis, ESI mass spectrometry, IR, UV–vis, and 1H NMR spectroscopy, and single-crystal X-ray diffraction, with complexes 6 and 7 being characterized also by temperature-dependent magnetic susceptibility measurements and Mössbauer spectroscopy. Magnetometry indicated a strong antiferromagnetic interaction between paramagnetic centers in 6 and 7. The ability of 4 and 6–8 to form linkage isomers and release NO upon irradiation in the solid state was investigated by IR spectroscopy. A theoretical investigation of the electronic structure of 6 by DFT and ab initio CASSCF/NEVPT2 calculations indicated a redox-noninnocent behavior of the NO ancillary ligand in 6, which was also manifested in TD-DFT calculations of its electronic absorption spectrum. The electronic structure of 6 was also studied by an X-ray charge density analysis., Mononuclear trans-[Ru(OH)NO(Hpz)4]2+ proved to be a source of μ-hydroxido and μ3- and/or μ4-oxido bridging groups, which could be incorporated into the heterotrinuclear complexes {[Ru(μ-OH)(μ-pz)2(pz)(NO)(Hpz)]2Mg}, [Fe2RuCl4(μ3-O)(μ-OMe)(μ-pz)2(NO)(Hpz)2], and [Fe2RuCl3(μ3-O)(μ-OMe)(μ-pz)3(MeOH)(NO)(Hpz)][Fe2RuCl3(μ3-O)(μ-OMe)(μ-pz)3(DMF)(NO)(Hpz)] (7·MeOH·2H2O) and the heterotetranuclear μ4-oxido complex [Ga3RuCl3(μ4-O)(μ-OMe)3(μ-pz)4(NO)]. The structures obtained were all confirmed by SC-XRD, including an X-ray charge density analysis that revealed the electronic structure of the RuFe2 cluster. Two of these nitrosyl complexes underwent photoinduced isomerization with generation of the nitrosyl linkage isomers MS1 and MS2, as revealed by IR spectroscopy at 10 K.