1. Automatic teeth segmentation on panoramic X-rays using deep neural networks
- Author
-
Nader, Rafic, Smorodin, Andrey, de La Fourniere, Natalia, Amouriq, Yves, Autrusseau, Florent, Autrusseau, Florent, unité de recherche de l'institut du thorax UMR1087 UMR6291 (ITX), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Nantes Université - UFR de Médecine et des Techniques Médicales (Nantes Univ - UFR MEDECINE), Nantes Université - pôle Santé, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Santé, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), Odessa National Polytechnic University, Artefakt-AI, Regenerative Medicine and Skeleton (RMeS), École nationale vétérinaire, agroalimentaire et de l'alimentation Nantes-Atlantique (ONIRIS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Nantes Université - UFR Odontologie, Laboratoire de Thermique et d’Energie de Nantes (LTeN), Centre National de la Recherche Scientifique (CNRS)-Nantes Université - Ecole Polytechnique de l'Université de Nantes (Nantes Univ - EPUN), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, and ISITE NExT, Région pays de la Loire, Fonds Européen de Développement Régional (FEDER)
- Subjects
[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI] ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,[INFO.INFO-IM]Computer Science [cs]/Medical Imaging ,[INFO.INFO-IM] Computer Science [cs]/Medical Imaging ,deep learning ,[INFO]Computer Science [cs] ,location prior ,[INFO] Computer Science [cs] ,Panoramic X-ray images ,U-Net ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] ,Teeth segmentation - Abstract
International audience; In order to build an intelligent dental care process that both facilitates the treatment and improves the diagnosis, an accurate tooth segmentation and recognition on panoramic X-ray images might prove helpful. Although many studies have been conducted on teeth segmentation, few methods allow to perform tooth recognition and numbering at the same time. The existing methods allowing both those processes rely on instance segmentation architectures. To fill some gaps in the area of dental image segmentation, we propose a novel approach of automatic joint teeth segmentation and numbering using the pioneer U-Net model. We are first to employ the conventional U-Net model and show its limitations to provide accurate segmentation, being affected by noisy pixels outside the teeth region and by missing teeth in the X-ray images. To overcome this problem and reduce the misclassifications, we use a bounding box prior at the level of the skip connections. Such an approach helps guiding the network to better locate the teeth, and hence improves the segmentation. To validate the effectiveness of the method, we have conducted two experiments on the DNS Panoramic Dataset: a first one using manual bounding boxes and another one relying on a preliminary step of object detection. The implemented networks were evaluated using the Dice coefficient index and our results showed that consideration of location information onto the skip connections improves the performances of the semantic segmentation by 5% to 10% in average Dice accuracy depending on the quality of the bounding box labels.
- Published
- 2022
- Full Text
- View/download PDF