85 results on '"Arthur Corstanje"'
Search Results
2. Sub-arcsecond imaging with the International LOFAR Telescope I. Foundational calibration strategy and pipeline
- Author
-
Martin J. Hardcastle, H. Paas, Matthias Hoeft, J. Moldon, R. Pizzo, Arthur Corstanje, A. Kappes, S. Mooney, John McKean, Gottfried Mann, Pietro Zucca, Harvey Butcher, M. Pandey-Pommier, Joseph R. Callingham, A. Nelles, S. Duscha, Marco Iacobelli, Aleksander Shulevski, V. N. Pandey, Ph. Zarka, Annalisa Bonafede, S. Badole, M. Ruiter, Ashish Asgekar, Hanna Rothkaehl, M. P. van Haarlem, P. Kukreti, Wolfgang Reich, Michel Tagger, J. M. Anderson, Marian Soida, A. H. W. M. Coolen, Judith H. Croston, Olaf Wucknitz, Neal Jackson, Heino Falcke, W. N. Brouw, Jochen Eislöffel, Philip Best, A. Drabent, F. Sweijen, F. de Gasperin, Dominik J. Schwarz, Cyril Tasse, J. B. R. Oonk, J. M. Griessmeier, Benedetta Ciardi, S. Damstra, A. J. van der Horst, Stefan J. Wijnholds, C. Groeneveld, E. Jütte, D. Engels, I. M. Avruch, Ralph A. M. J. Wijers, Léon V. E. Koopmans, Timothy W. Shimwell, Emanuela Orru, Andrzej Krankowski, R. J. van Weeren, Leah K. Morabito, A. W. Gunst, I. van Bemmel, D. Venkattu, Mark J. Bentum, Adam T. Deller, Christian Vocks, George K. Miley, John Conway, M. A. Garrett, M. Bondi, Matthias Kadler, E. Bonnassieux, H. J. A. Röttgering, API Other Research (FNWI), High Energy Astrophys. & Astropart. Phys (API, FNWI), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Unité Scientifique de la Station de Nançay (USN), Centre National de la Recherche Scientifique (CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), Galaxies, Etoiles, Physique, Instrumentation (GEPI), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Observatoire des Sciences de l'Univers en région Centre (OSUC), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), European Commission, European Research Council, Ministerio de Ciencia e Innovación (España), Science and Technology Facilities Council (UK), Astronomy, and Kapteyn Astronomical Institute
- Subjects
Astronomy ,Pipeline (computing) ,active ,Field of view ,Astrophysics ,01 natural sciences ,law.invention ,high angular resolution, radiation mechanisms ,law ,galaxies ,active, galaxies ,010303 astronomy & astrophysics ,media_common ,Physics ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,Astrometry ,Interferometry ,Astrophysics - Instrumentation and Methods for Astrophysics ,high angular resolution ,jets ,active [Galaxies] ,media_common.quotation_subject ,galaxies: active ,FOS: Physical sciences ,Telescope ,0103 physical sciences ,Calibration ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Remote sensing ,non-thermal [Radiation mechanisms] ,non-thermal radiation ,010308 nuclear & particles physics ,techniques: high angular resolution ,active galaxies ,Astronomy and Astrophysics ,LOFAR ,radiation mechanisms: non-thermal ,galaxies: jets ,Astrophysics - Astrophysics of Galaxies ,high angular resolution [Techniques] ,non-thermal ,radiation mechanisms ,[SDU]Sciences of the Universe [physics] ,Space and Planetary Science ,Sky ,Astrophysics of Galaxies (astro-ph.GA) ,non-thermal, galaxies ,jets, Astrophysics - Instrumentation and Methods for Astrophysics, Astrophysics - Astrophysics of Galaxies ,jets [Galaxies] ,techniques ,jets of galaxies - Abstract
Full list of authors: Morabito, L. K.; Jackson, N. J.; Mooney, S.; Sweijen, F.; Badole, S.; Kukreti, P.; Venkattu, D.; Groeneveld, C.; Kappes, A.; Bonnassieux, E.; Drabent, A.; Iacobelli, M.; Croston, J. H.; Best, P. N.; Bondi, M.; Callingham, J. R.; Conway, J. E.; Deller, A. T.; Hardcastle, M. J.; McKean, J. P.; Miley, G. K.; Moldon, J.; Röttgering, H. J. A.; Tasse, C.; Shimwell, T. W.; van Weeren, R. J.; Anderson, J. M.; Asgekar, A.; Avruch, I. M.; van Bemmel, I. M.; Bentum, M. J.; Bonafede, A.; Brouw, W. N.; Butcher, H. R.; Ciardi, B.; Corstanje, A.; Coolen, A.; Damstra, S.; de Gasperin, F.; Duscha, S.; Eislöffel, J.; Engels, D.; Falcke, H.; Garrett, M. A.; Griessmeier, J.; Gunst, A. W.; van Haarlem, M. P.; Hoeft, M.; van der Horst, A. J.; Jütte, E.; Kadler, M.; Koopmans, L. V. E.; Krankowski, A.; Mann, G.; Nelles, A.; Oonk, J. B. R.; Orru, E.; Paas, H.; Pandey, V. N.; Pizzo, R. F.; Pandey-Pommier, M.; Reich, W.; Rothkaehl, H.; Ruiter, M.; Schwarz, D. J.; Shulevski, A.; Soida, M.; Tagger, M.; Vocks, C.; Wijers, R. A. M. J.; Wijnholds, S. J.; Wucknitz, O.; Zarka, P.; Zucca, P., The International LOFAR Telescope is an interferometer with stations spread across Europe. With baselines of up to ~2000 km, LOFAR has the unique capability of achieving sub-arcsecond resolution at frequencies below 200 MHz. However, it is technically and logistically challenging to process LOFAR data at this resolution. To date only a handful of publications have exploited this capability. Here we present a calibration strategy that builds on previous high-resolution work with LOFAR. It is implemented in a pipeline using mostly dedicated LOFAR software tools and the same processing framework as the LOFAR Two-metre Sky Survey (LoTSS). We give an overview of the calibration strategy and discuss the special challenges inherent to enacting high-resolution imaging with LOFAR, and describe the pipeline, which is publicly available, in detail. We demonstrate the calibration strategy by using the pipeline on P205+55, a typical LoTSS pointing with an 8 h observation and 13 international stations. We perform in-field delay calibration, solution referencing to other calibrators in the field, self-calibration of these calibrators, and imaging of example directions of interest in the field. We find that for this specific field and these ionospheric conditions, dispersive delay solutions can be transferred between calibrators up to ~1.5° away, while phase solution transferral works well over ~1°. We also demonstrate a check of the astrometry and flux density scale with the in-field delay calibrator source. Imaging in 17 directions, we find the restoring beam is typically ~0.3′′ ×0.2′′ although this varies slightly over the entire 5 deg2 field of view. We find we can achieve ~80–300 μJy bm−1 image rms noise, which is dependent on the distance from the phase centre; typical values are ~90 μJy bm−1 for the 8 h observation with 48 MHz of bandwidth. Seventy percent of processed sources are detected, and from this we estimate that we should be able to image roughly 900 sources per LoTSS pointing. This equates to ~ 3 million sources in the northern sky, which LoTSS will entirely cover in the next several years. Future optimisation of the calibration strategy for efficient post-processing of LoTSS at high resolution makes this estimate a lower limit. © ESO 2022., This work made use of the Dutch national e-infrastructure with the support of the SURF Cooperative using grant no. EINF-262 LKM is grateful for support from the Medical Research Council (grant MR/T042842/1). S.M. acknowledges support from the Governmentof Ireland Postgraduate Scholarship Programme. E.B. acknowledges support from the ERC-ERG grant DRANOEL, n.714245. A.D. acknowledges support by the BMBF Verbundforschung under the grant 052020. J.H.C. acknowledges support from the UK Science and Technology Facilities Council (ST/R000794/1). P.N.B. is grateful for support from the UK STFC via grant ST/R000972/1. J.R.C. thanks the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) for support via the Talent Programme Veni grant. M.J.H. acknowledges support from the UK Science and Technology Facilities Council (ST/R000905/1). J.P.M. acknowledges support from the NetherlandsOrganization for Scientific Research (NWO, project number 629.001.023) and the Chinese Academy of Sciences (CAS, project number 114A11KYSB20170054). J.M. acknowledges financial support from the State Agency for Research of the Spanish MCIU through the “Center of Excellence Severo Ochoa” award to the Instituto de Astrofísicade Andalucía (SEV-2017-0709) and from the grant RTI2018-096228-B-C31 (MICIU/FEDER, EU). R.J.v.W. acknowledges support from the ERC Starting Grant ClusterWeb 804208. D.J.S. acknowledges support by the GermanFederal Ministry for Science and Research BMBF-Verbundforschungsprojekt D-LOFAR 2.0 (grant numbers 05A20PB1). LOFAR (van Haarlem et al. 2013) is the Low Frequency Array designed and constructed by ASTRON. It has observing, data processing, and data storage facilities in several countries, that are owned by various parties (each with their own funding sources), and that are collectively operated by the ILT foundation under a joint scientific policy. The ILT resources have benefitted from the following recent major funding sources: CNRS-INSU, Observatoire de Paris and Université d’Orléans, France; BMBF, MIWF-NRW, MPG, Germany; Science Foundation Ireland (SFI), Department of Business, Enterprise and Innovation (DBEI), Ireland; NWO, The Netherlands; The Science and Technology Facilities Council, UK; Ministry of Science and Higher Education, Poland.
- Published
- 2022
- Full Text
- View/download PDF
3. Results on mass composition of cosmic rays as measured with LOFAR
- Author
-
Stijn Buitink, Katie Mulrey, Tobias Winchen, Arthur Corstanje, Heino Falcke, Anna Nelles, H. Pandya, Gia Trinh, Jörg P. Rachen, Jörg R. Hörandel, Olaf Scholten, G. K. Krampah, Pragati Mitra, Brian Hare, Tim Huege, Sander ter Veen, and Satyendra Thoudam
- Subjects
Physics ,Particle physics ,Astronomy ,Cosmic ray ,LOFAR ,Mass composition ,Standard deviation ,law.invention ,Telescope ,Distribution (mathematics) ,law ,Range (statistics) ,ddc:530 ,Energy (signal processing) - Abstract
We present an updated analysis of the mass composition of cosmic rays in the energy range of $10^{16.8}$ to $10^{18.3}$ eV. It is based on measurements with the LOFAR telescope of the depth of shower maximum, $X_{\rm max}$. We review the improvements to the simulation-based reconstruction setup, as well as the selection method to obtain a minimally biased $X_{\rm max}$ dataset. Results include estimates of the mean and standard deviation of the $X_{\rm max}$ distribution. A statistical analysis at distribution level has been done as well, using a four-component model of light to heavy nuclei. It confirms our previous results showing a significant low-mass fraction in this energy range. The radio technique has advanced enough that multiple observatories are publishing results on $X_{\rm max}$. As the array layouts and methods vary, it is interesting to compare the approaches, in light of the observed differences in the $X_{\rm max}$ results. We therefore show additional information on bias tests used in the $X_{\rm max}$ reconstruction and sample selection process.
- Published
- 2022
- Full Text
- View/download PDF
4. Performance of SKA as an air shower observatory
- Author
-
Katharine Mulrey, Anna Nelles, Heino Falcke, Brian Hare, H. Pandya, Sander ter Veen, C. W. James, Satyendra Thoudam, Gia Trinh, Tim Huege, Pragati Mitra, Stijn Buitink, G. K. Krampah, Arthur Corstanje, Jörg P. Rachen, Jörg R. Hörandel, Tobias Winchen, and Olaf Scholten
- Subjects
Physics ,Antenna array ,Range (particle radiation) ,Air shower ,Duty cycle ,Observatory ,Astronomy ,Detector ,ddc:530 ,LOFAR ,Energy (signal processing) - Abstract
The low frequency segment of SKA in Australia will have an extremely dense antenna array spanning an area of roughly 0.5 km$^2$. It offers unique possibilities for high‐resolution observations of air showers. Compared to LOFAR, it will have a much more homogeneous ground coverage, an increased frequency bandwidth (50-350 MHz), and the possibility to continuously observe with nearly 100% duty cycle. SKA will observe air showers in the range 10$^{16}$ eV - 10$^{18}$ eV with a reconstruction resolution on \xmax\ of around 10 g/cm$^2$. This allows for a high‐precision study of mass composition in the energy regime where a transition is expected from Galactic to extragalactic origin. In addition, SKA will be able to put constraints on hadronic interaction models, which is crucial for interpreting the data in this complex energy range. In this talk, we will show the results of a full detector simulation and demonstrate the capabilities of SKA, including energy and Xmax reconstruction, as well as more advanced methods to constrain the shape of the longitudinal development of air showers.
- Published
- 2022
5. Sub-arcsecond imaging with the International LOFAR Telescope II. Completion of the LOFAR Long-Baseline Calibrator Survey
- Author
-
G. K. Miley, Annalisa Bonafede, M. P. van Haarlem, Jochen Eislöffel, John McKean, P. C. G. van Dijk, M. A. Garrett, B. Ciardi, R. Blaauw, E. Jütte, Harvey Butcher, O. Wucknitz, Luitje Koopmans, Oleg Smirnov, M. Pandey-Pommier, Pietro Zucca, Joseph R. Callingham, S. Mooney, R. J. van Weeren, A. Nelles, Antonia Rowlinson, W. Reich, Heino Falcke, S. Duscha, Rajan Chhetri, Emanuela Orrú, G. Mann, Dominik J. Schwarz, Michiel A. Brentjens, P. Zarka, M. Ruiter, Hanna Rothkaehl, Kaspars Prūsis, Ralph A. M. J. Wijers, S. Badole, Jean-Mathias Griessmeier, P. Maat, Neal Jackson, Marco Iacobelli, Jeremy J. Harwood, Andrzej Krankowski, M. J. Norden, Vishambhar Pandey, A. J. van der Horst, John Morgan, F. Sweijen, Adam Deller, George Heald, S. Damstra, Martin J. Hardcastle, Mark J. Bentum, Ashish Asgekar, Leah K. Morabito, A. W. Gunst, M. Tagger, A. Shulevski, C. Vocks, A. Drabent, Javier Moldon, A. H. W. M. Coolen, M. Paas, Atvars Nikolajevs, W. N. Brouw, J. Sluman, Roberto Pizzo, Marcus Brüggen, Henk Mulder, Matthias Hoeft, F. de Gasperin, I. M. Avruch, J. A. Zensus, Arthur Corstanje, Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Unité Scientifique de la Station de Nançay (USN), Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Centre National de la Recherche Scientifique (CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), European Commission, Ministerio de Ciencia e Innovación (España), Netherlands Organization for Scientific Research, UK Research and Innovation, Chinese Academy of Sciences, High Energy Astrophys. & Astropart. Phys (API, FNWI), Kapteyn Astronomical Institute, Center for Wireless Technology Eindhoven, and EM for Radio Science Lab
- Subjects
active -Radio continuum ,active [Galaxies] ,Radio galaxy ,galaxies -Atmospheric physics ,Astronomy ,media_common.quotation_subject ,FOS: Physical sciences ,Flux ,Murchison Widefield Array ,ionosphere ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Surveys ,Interplanetary scintillation ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Instrumentation ,Remote sensing ,media_common ,Physics ,Spectral index ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,Radio lines: galaxies ,Astrophysics::Instrumentation and Methods for Astrophysics ,interferometers [Instrumentation] ,Astronomy and Astrophysics ,Quasar ,LOFAR ,Galaxies: active ,interferometers -Techniques ,Astrophysics - Astrophysics of Galaxies ,galaxies [Radio lines] ,Space and Planetary Science ,Sky ,[SDU]Sciences of the Universe [physics] ,Instrumentation: interferometers ,Astrophysics of Galaxies (astro-ph.GA) ,Techniques: interferometric ,interferometric [Techniques] ,interferometric -Surveys -Galaxies ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
Full list of authors: Jackson, N.; Badole, S.; Morgan, J.; Chhetri, R.; Prūsis, K.; Nikolajevs, A.; Morabito, L.; Brentjens, M.; Sweijen, F.; Iacobelli, M.; Orrù, E.; Sluman, J.; Blaauw, R.; Mulder, H.; van Dijk, P.; Mooney, S.; Deller, A.; Moldon, J.; Callingham, J. R.; Harwood, J.; Hardcastle, M.; Heald, G.; Drabent, A.; McKean, J. P.; Asgekar, A.; Avruch, I. M.; Bentum, M. J.; Bonafede, A.; Brouw, W. N.; Brüggen, M.; Butcher, H. R.; Ciardi, B.; Coolen, A.; Corstanje, A.; Damstra, S.; Duscha, S.; Eislöffel, J.; Falcke, H.; Garrett, M.; de Gasperin, F.; Griessmeier, J. -M.; Gunst, A. W.; van Haarlem, M. P.; Hoeft, M.; van der Horst, A. J.; Jütte, E.; Koopmans, L. V. E.; Krankowski, A.; Maat, P.; Mann, G.; Miley, G. K.; Nelles, A.; Norden, M.; Paas, M.; Pandey, V. N.; Pandey-Pommier, M.; Pizzo, R. F.; Reich, W.; Rothkaehl, H.; Rowlinson, A.; Ruiter, M.; Shulevski, A.; Schwarz, D. J.; Smirnov, O.; Tagger, M.; Vocks, C.; van Weeren, R. J.; Wijers, R.; Wucknitz, O.; Zarka, P.; Zensus, J. A.; Zucca, P., The Low-Frequency Array (LOFAR) Long-Baseline Calibrator Survey (LBCS) was conducted between 2014 and 2019 in order to obtain a set of suitable calibrators for the LOFAR array. In this paper, we present the complete survey, building on the preliminary analysis published in 2016 which covered approximately half the survey area. The final catalogue consists of 30 006 observations of 24 713 sources in the northern sky, selected for a combination of high low-frequency radio flux density and flat spectral index using existing surveys (WENSS, NVSS, VLSS, and MSSS). Approximately one calibrator per square degree, suitable for calibration of ≥200 km baselines is identified by the detection of compact flux density, for declinations north of 30° and away from the Galactic plane, with a considerably lower density south of this point due to relative difficulty in selecting flat-spectrum candidate sources in this area of the sky. The catalogue contains indicators of degree of correlated flux on baselines between the Dutch core and each of the international stations, involving a maximum baseline length of nearly 2000 km, for all of the observations. Use of the VLBA calibrator list, together with statistical arguments by comparison with flux densities from lower-resolution catalogues, allow us to establish a rough flux density scale for the LBCS observations, so that LBCS statistics can be used to estimate compact flux densities on scales between 300 mas and 2′′, for sources observed in the survey. The survey is used to estimate the phase coherence time of the ionosphere for the LOFAR international baselines, with median phase coherence times of about 2 min varying by a few tens of percent between theshortest and longest baselines. The LBCS can be used to assess the structures of point sources in lower-resolution surveys, with significant reductions in the degree of coherence in these sources on scales between 2′′ and 300 mas. The LBCS survey sources show a greater incidence of compact flux density in quasars than in radio galaxies, consistent with unified schemes of radio sources. Comparison with samples of sources from interplanetary scintillation (IPS) studies with the Murchison Widefield Array shows consistent patterns of detection of compact structure in sources observed both interferometrically with LOFAR and using IPS. © ESO 2022., Support for the operation of the MWA is provided by the Australian Government (NCRIS), under a contract to Curtin University administered by Astronomy Australia Limited. We acknowledge the Pawsey Supercomputing Centre which is supported by the Western Australian and Australian Governments. A.D. acknowledges support by the BMBF Verbundforschung under the grant 052020. L.K.M. is grateful for support from the UKRI Future Leaders Fellowship (grant MR/T042842/1). J. Moldón acknowledges financial support from the State Agency for Research of the Spanish MCIU through the “Center of Excellence Severo Ochoa” award to the Instituto de Astrofísica de Andalucía (SEV-2017-0709) and from the grant RTI2018-096228-B-C31 (MICIU/FEDER, EU). J.P.M. acknowledges support from the Netherlands Organization for Scientific Research (NWO, project number 629.001.023) and the Chinese Academy of Sciences (CAS, project number 114A11KYSB20170054).
- Published
- 2022
- Full Text
- View/download PDF
6. A distinct negative leader propagation mode
- Author
-
T. Huege, Ivana Kolmasova, Heino Falcke, Olaf Scholten, Ningyu Liu, A. Nelles, H. Pandya, Stijn Buitink, Katie Mulrey, Jörg P. Rachen, Jörg R. Hörandel, Arthur Corstanje, Joseph R. Dwyer, Radek Lan, C. Sterpka, Brian Hare, Luděk Uhlíř, Ondřej Santolík, Tobias Winchen, G. K. Krampah, S. ter Veen, Pragati Mitra, T. N. G. Trinh, Satyendra Thoudam, Astronomy, Research unit Astroparticle Physics, Physics, and Faculty of Sciences and Bioengineering Sciences
- Subjects
Physics ,Atmospheric dynamics ,Multidisciplinary ,010504 meteorology & atmospheric sciences ,Astronomy ,Science ,Mode (statistics) ,Natural hazards ,LOFAR ,010501 environmental sciences ,010502 geochemistry & geophysics ,Lightning ,01 natural sciences ,Article ,Radio telescope ,Medicine ,Electric discharge ,ddc:530 ,ddc:600 ,0105 earth and related environmental sciences - Abstract
Scientific reports 11, 16256 (2021). doi:10.1038/s41598-021-95433-5, The common phenomenon of lightning still harbors many secrets such as what are the conditions for lightning initiation and what is driving the discharge to propagate over several tens of kilometers through the atmosphere forming conducting ionized channels called leaders. Since lightning is an electric discharge phenomenon, there are positively and negatively charged leaders. In this work we report on measurements made with the LOFAR radio telescope, an instrument primarily build for radio-astronomy observations. It is observed that a negative leader rather suddenly changes, for a few milliseconds, into a mode where it radiates 100 times more VHF power than typical negative leaders after which it spawns a large number of more typical negative leaders. This mode occurs during the initial stage, soon after initiation, of all lightning flashes we have mapped (about 25). For some flashes this mode occurs also well after initiation and we show one case where it is triggered twice, some 100 ms apart. We postulate that this is indicative of a small (order of 5 km$^2$) high charge pocket. Lightning thus appears to be initiated exclusively in the vicinity of such a small but dense charge pocket., Published by Macmillan Publishers Limited, part of Springer Nature, [London]
- Published
- 2021
- Full Text
- View/download PDF
7. The relationship of lightning radio pulse amplitudes and source altitudes as observed by LOFAR
- Author
-
A. Nelles, Arthur Corstanje, Heino Falcke, Brian Hare, Stijn Buitink, Katie Mulrey, H. Pandya, J. G. O. Machado, T. Huege, Olaf Scholten, Satyendra Thoudam, G. K. Krampah, Pragati Mitra, S. ter Veen, Tobias Winchen, T. N. G. Trinh, Jörg P. Rachen, Jörg R. Hörandel, Astronomy, Astronomy and Astrophysics Research Group, Physics, and Faculty of Sciences and Bioengineering Sciences
- Subjects
Astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Environmental Science (miscellaneous) ,radio astronomy ,Atmosphere ,Flash (photography) ,Altitude ,ddc:550 ,ddc:530 ,Physics::Atmospheric and Oceanic Physics ,amplitude ,Physics ,pulse detection ,Astrophysics::Instrumentation and Methods for Astrophysics ,LOFAR ,Lightning ,Pulse (physics) ,Amplitude ,Physics::Space Physics ,General Earth and Planetary Sciences ,lightning ,Radio astronomy ,altitude - Abstract
Earth and Space Science 9(4), e2021EA001958 (2022). doi:10.1029/2021EA001958, When a lightning flash is propagating in the atmosphere it is known that especially the negative leaders emit a large number of very high frequency (VHF) radio pulses. It is thought that this is due to streamer activity at the tip of the growing negative leader. In this work, we have investigated the dependence of the strength of this VHF emission on the altitude of such emission for two lightning flashes as observed by the Low Frequency ARray (LOFAR) radio telescope. We find for these two flashes that the extracted amplitude distributions are consistent with a power-law, and that the amplitude of the radio emissions decreases very strongly with source altitude, by more than a factor of 2 from 1 km altitude up to 5 km altitude. In addition, we do not find any dependence on the extracted power-law with altitude, and that the extracted power-law slope has an average around 3, for both flashes., Published by American Geophysical Union, Malden, Mass.
- Published
- 2021
- Full Text
- View/download PDF
8. Depth of shower maximum and mass composition of cosmic rays from 50 PeV to 2 EeV measured with the LOFAR radio telescope
- Author
-
G. K. Krampah, G. Trinh, Tobias Winchen, Brian Hare, S. ter Veen, Pragati Mitra, Arthur Corstanje, Anna Nelles, Stijn Buitink, Katie Mulrey, Heino Falcke, H. Pandya, Jörg P. Rachen, J. R. Hörandel, Satyendra Thoudam, T. Huege, Olaf Scholten, Astronomy, Physics, and Faculty of Sciences and Bioengineering Sciences
- Subjects
mass spectrum [cosmic radiation] ,air ,Astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,Hadron ,FOS: Physical sciences ,Cosmic ray ,helium ,Astrophysics ,01 natural sciences ,High Energy Physics - Experiment ,Radio telescope ,High Energy Physics - Experiment (hep-ex) ,0103 physical sciences ,ddc:530 ,010306 general physics ,Line (formation) ,astro-ph.HE ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Experiments in gravity, cosmology, cosmic rays ,Physics ,Pierre Auger Observatory ,hep-ex ,010308 nuclear & particles physics ,model [interaction] ,nucleus ,Astrophysics::Instrumentation and Methods for Astrophysics ,parametrization ,LOFAR ,tension ,Auger ,observatory ,detector [radio wave] ,Air shower ,13. Climate action ,hadronic [model] ,galaxy ,Astrophysics - High Energy Astrophysical Phenomena ,statistical ,Energy (signal processing) ,atmosphere [showers] - Abstract
We present an updated cosmic-ray mass composition analysis in the energy range $10^{16.8}$ to $10^{18.3}$ eV from 334 air showers measured with the LOFAR radio telescope, and selected for minimal bias. In this energy range, the origin of cosmic rays is expected to shift from galactic to extragalactic sources. The analysis is based on an improved method to infer the depth of maximum $X_{\rm max}$ of extensive air showers from radio measurements and air shower simulations. We show results of the average and standard deviation of $X_{\rm max}$ versus primary energy, and analyze the $X_{\rm max}$-dataset at distribution level to estimate the cosmic ray mass composition. Our approach uses an unbinned maximum likelihood analysis, making use of existing parametrizations of $X_{\rm max}$-distributions per element. The analysis has been repeated for three main models of hadronic interactions. Results are consistent with a significant light-mass fraction, at best fit $23$ to $39$ $\%$ protons plus helium, depending on the choice of hadronic interaction model. The fraction of intermediate-mass nuclei dominates. This confirms earlier results from LOFAR, with systematic uncertainties on $X_{\rm max}$ now lowered to 7 to $9$ $\mathrm{g/cm^2}$. We find agreement in mass composition compared to results from Pierre Auger Observatory, within statistical and systematic uncertainties. However, in line with earlier LOFAR results, we find a slightly lower average $X_{\rm max}$. The values are in tension with those found at Pierre Auger Observatory, but agree with results from other cosmic ray observatories based in the Northern hemisphere., 24 pages, 14 figures. Accepted for publication in Phys. Rev. D
- Published
- 2021
- Full Text
- View/download PDF
9. The Initial Stage of Cloud Lightning Imaged in High Resolution
- Author
-
Ondrej Santolik, Katharine Mulrey, A. Nelles, Luděk Uhlíř, S. ter Veen, Heino Falcke, Tobias Winchen, Arthur Corstanje, Olaf Scholten, H. Pandya, Tim Huege, C. Sterpka, Joseph R. Dwyer, G. K. Krampah, Radek Lan, Pragati Mitra, Brian Hare, A. Pel, Ivana Kolmasova, Satyendra Thoudam, T. N. G. Trinh, Jörg P. Rachen, Jörg R. Hörandel, Stijn Buitink, Physics, Faculty of Sciences and Bioengineering Sciences, Astronomy, and Research unit Astroparticle Physics
- Subjects
Atmospheric Science ,010504 meteorology & atmospheric sciences ,business.industry ,Astronomy ,FOS: Physical sciences ,High resolution ,Cloud computing ,LOFAR ,01 natural sciences ,Lightning ,Physics - Atmospheric and Oceanic Physics ,Geophysics ,13. Climate action ,Space and Planetary Science ,Atmospheric and Oceanic Physics (physics.ao-ph) ,Earth and Planetary Sciences (miscellaneous) ,ddc:550 ,Stage (hydrology) ,business ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Geology ,0105 earth and related environmental sciences ,Remote sensing - Abstract
With LOFAR we have been able to image the development of lightning flashes with meter-scale accuracy and unprecedented detail. We discuss the primary steps behind our most recent lightning mapping method. To demonstrate the capabilities of our technique we show and interpret images of the first few milliseconds of two intra-cloud flashes. In all our flashes the negative leaders propagate in the charge layer below the main negative charge. Among several interesting features we show that in about 2~ms after initiation the Primary Initial Leader triggers the formation of a multitude (more than ten) negative leaders in a rather confined area of the atmosphere. From these only one or two continue to propagate after about 30~ms to extend over kilometers horizontally while another may propagate back to the initiation point. We also show that normal negative leaders can transition into an initial-leader like state, potentially in the presence of strong electric fields. In addition, we show some initial breakdown pulses that occurred during the primary initial leader, and even during two "secondary" initial leaders that developed out of stepped leaders., Submitted to Journal of geophysics research: Atmospheres
- Published
- 2021
- Full Text
- View/download PDF
10. Distinguishing features of high altitude negative leaders as observed with LOFAR
- Author
-
Joseph R. Dwyer, G. K. Krampah, C. Sterpka, A. Nelles, Arthur Corstanje, Heino Falcke, Stijn Buitink, Katie Mulrey, S. ter Veen, Ningyu Liu, H. Pandya, T. N. G. Trinh, Jörg P. Rachen, Jörg R. Hörandel, Tobias Winchen, Pragati Mitra, Satyendra Thoudam, Brian Hare, T. Huege, Olaf Scholten, Physics, Faculty of Sciences and Bioengineering Sciences, and Astronomy
- Subjects
Atmospheric Science ,010504 meteorology & atmospheric sciences ,Astronomy ,Physics ,High resolution ,LOFAR ,010501 environmental sciences ,Effects of high altitude on humans ,01 natural sciences ,Thunderstorms ,Lightning ,Negative leaders ,Radio telescope ,Altitude ,Corona flash ,ddc:530 ,Radio emission ,LOFAR lightning imaging ,Geology ,0105 earth and related environmental sciences - Abstract
Atmospheric research 260, 105688 (2021). doi:10.1016/j.atmosres.2021.105688, We present high resolution observations of negative leaders at high altitude using the LOFAR radio telescope. We show that the structure of negative leaders at high altitude (altitudes larger than 7 km) differs in several respects from that of negative leaders at lower altitudes. In particular, the High Altitude Negative Leaders (HANLs) show very distinct steps of a few hundred meters, stepping times of the order of a few milliseconds and a filamentary structure that extends outward over several hundreds of meters; as opposed to lower altitude (��� 5 km) leaders, which have stepping times and distances around 0.01 ms and 10 m. Similar to lower altitude leaders, high altitude leaders emit copious VHF radiation from their propagating tip and have propagation velocities of the order of 10$^5$ m/s. Corona-flash like bursts can be distinguished when zooming in to meter and nanosecond scales., Published by Elsevier, Amsterdam [u.a.]
- Published
- 2021
- Full Text
- View/download PDF
11. Timing Calibration and Windowing Technique Comparison for Lightning Mapping Arrays
- Author
-
Brian Hare, Paul R. Krehbiel, S. ter Veen, T. N. G. Trinh, Harald E. Edens, Satyendra Thoudam, Jörg P. Rachen, Jörg R. Hörandel, Anna Nelles, Heino Falcke, H. Pandya, Olaf Scholten, Pragati Mitra, Arthur Corstanje, W. Rison, Tobias Winchen, Stijn Buitink, Katie Mulrey, G. K. Krampah, Tim Huege, Physics, Faculty of Sciences and Bioengineering Sciences, Astronomy, and Research unit Astroparticle Physics
- Subjects
010504 meteorology & atmospheric sciences ,Astronomy ,Atmospheric Electricity ,QB1-991 ,Environmental Science (miscellaneous) ,010502 geochemistry & geophysics ,01 natural sciences ,Radio telescope ,Set (abstract data type) ,0103 physical sciences ,Limit (music) ,ddc:550 ,Calibration ,Astronomical interferometer ,ddc:530 ,010303 astronomy & astrophysics ,Antenna Arrays ,0105 earth and related environmental sciences ,Remote sensing ,QE1-996.5 ,business.industry ,Physics ,Electromagnetics ,Geology ,LOFAR ,Lightning ,Atmospheric Processes ,Global Positioning System ,General Earth and Planetary Sciences ,business ,Research Article - Abstract
Earth and Space Science 8(7), 2020EA001523 (2021). doi:10.1029/2020EA001523, Since their introduction 22 years ago, lightning mapping arrays (LMA) have played a central role in the investigation of lightning physics. Even in recent years with the proliferation of digital interferometers and the introduction of the LOw Frequency ARray (LOFAR) radio telescope, LMAs still play an important role in lightning science. LMA networks use a simple windowing technique that records the highest pulse in either 80 ��s or 10 ��s fixed windows in order to apply a time-of-arrival location technique. In this work, we develop an LMA-emulator that uses lightning data recorded by LOFAR to simulate an LMA, and we use it to test three new styles of pulse windowing. We show that they produce very similar results as the more traditional LMA windowing, implying that LMA lightning mapping results are relatively independent of windowing technique. In addition, each LMA station has its GPS-conditioned clock. While the timing accuracy of GPS receivers has improved significantly over the years, they still significantly limit the timing measurements of the LMA. Recently, new time-of-arrival techniques have been introduced that can be used to self-calibrate systematic offsets between different receiving stations. Applying this calibration technique to a set of data with 32 ns uncertainty, observed by the Colorado LMA, improves the timing uncertainty to 19 ns. This technique is not limited to LMAs and could be used to help calibrate future multi-station lightning interferometers., Published by American Geophysical Union, Malden, Mass.
- Published
- 2021
- Full Text
- View/download PDF
12. Needle Propagation and Twinkling Characteristics
- Author
-
Arthur Corstanje, C. Strepka, Brian Hare, Jörg P. Rachen, Jörg R. Hörandel, T. Huege, Olaf Scholten, Tobias Winchen, Heino Falcke, G. K. Krampah, H. Pandya, Satyendra Thoudam, Pragati Mitra, Joseph R. Dwyer, A. Nelles, Stijn Buitink, Katie Mulrey, S. ter Veen, T. N. G. Trinh, Astronomy, Physics, and Faculty of Sciences and Bioengineering Sciences
- Subjects
Physics ,Atmospheric Science ,business.industry ,Astronomy ,imaging ,LOFAR ,needles ,Lightning ,VHF ,Geophysics ,Optics ,Recoil ,Space and Planetary Science ,ddc:550 ,Earth and Planetary Sciences (miscellaneous) ,ddc:530 ,mapping ,business ,lightning ,Twinkling - Abstract
Journal of geophysical research / D 126(6), JD034252 (2021). doi:10.1029/2020JD034252, Recently, a new lightning phenomena, termed needles, has been observed in both VHF and in optical along positive lightning leaders. They appear as small (, Published by Wiley, Hoboken, NJ
- Published
- 2021
- Full Text
- View/download PDF
13. Reconstructing air shower parameters with LOFAR using event specific GDAS atmosphere
- Author
-
Brian Hare, Anna Nelles, Stijn Buitink, Katie Mulrey, Heino Falcke, S. ter Veen, T. N. G. Trinh, Laura Rossetto, H. Pandya, Jörg P. Rachen, G. K. Krampah, Antonio Bonardi, Tim Huege, Jörg R. Hörandel, Pragati Mitra, Arthur Corstanje, Olaf Scholten, Tobias Winchen, Faculty of Sciences and Bioengineering Sciences, Physics, Elementary Particle Physics, Astronomy, and Research unit Astroparticle Physics
- Subjects
Meteorology ,Effects of humidity ,Astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,Monte Carlo method ,FOS: Physical sciences ,Cosmic ray ,Atmospheric model ,01 natural sciences ,Cosmic Ray ,Atmosphere ,Data assimilation ,0103 physical sciences ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,010303 astronomy & astrophysics ,Physics::Atmospheric and Oceanic Physics ,astro-ph.HE ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,Atmospheric models ,Radio detection technique ,010308 nuclear & particles physics ,Astrophysics::Instrumentation and Methods for Astrophysics ,Index of refraction ,X-max reconstruction ,Astronomy and Astrophysics ,LOFAR ,EAS ,GDAS ,COSMIC-RAYS ,Air shower ,13. Climate action ,RADIO-EMISSION ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Instrumentation and Methods for Astrophysics ,astro-ph.IM - Abstract
The limited knowledge of atmospheric parameters like humidity, pressure, temperature, and the index of refraction has been one of the important systematic uncertainties in reconstructing the depth of the shower maximum from the radio emission of air showers. Current air shower Monte Carlo simulation codes like CORSIKA and the radio plug-in CoREAS use various averaged parameterized atmospheres. However, time-dependent and location-specific atmospheric models are needed for the cosmic ray analysis method used for LOFAR data. There, dedicated simulation sets are used for each detected cosmic ray, to take into account the actual atmospheric conditions at the time of the measurement. Using the Global Data Assimilation System (GDAS), a global atmospheric model, we have implemented time-dependent, realistic atmospheric profiles in CORSIKA and CoREAS. We have produced realistic event-specific atmospheres for all air showers measured with LOFAR, an event set spanning several years and many different weather conditions. A complete re-analysis of our data set shows that for the majority of data, our previous correction factor performed rather well; we found only a small systematic shift of 2 g/cm$^2$ in the reconstructed $X_{\rm max}$. However, under extreme weather conditions, for example, very low air pressure, the shift can be up to 15 g/cm$^2$. We provide a correction formula to determine the shift in $X_{\rm max}$ resulting from a comparison of simulations done using the US-Std atmosphere and the GDAS-based atmosphere., Comment: Accepted for publication in Astroparticle Physics. arXiv admin note: text overlap with arXiv:1911.02859
- Published
- 2020
14. Radio Emission Reveals Inner Meter-Scale Structure of Negative Lightning Leader Steps
- Author
-
Heino Falcke, G. K. Krampah, B. Neijzen, H. Pandya, Joseph R. Dwyer, Jörg P. Rachen, Arthur Corstanje, Brian Hare, Ute Ebert, Antonio Bonardi, Tim Huege, Jörg R. Hörandel, Tobias Winchen, S Sander Nijdam, Olaf Scholten, Stijn Buitink, Katie Mulrey, S. ter Veen, Laura Rossetto, T. N. G. Trinh, Pragati Mitra, A. Nelles, Elementary Processes in Gas Discharges, Astronomy, Research unit Astroparticle Physics, and Centrum Wiskunde & Informatica, Amsterdam (CWI), The Netherlands
- Subjects
Physics ,Astronomy ,STREAMERS ,General Physics and Astronomy ,Plasma ,Astrophysics ,LOFAR ,Low frequency ,Radiation ,01 natural sciences ,Lightning ,Corona ,13. Climate action ,INCEPTION ,0103 physical sciences ,Thunderstorm ,Metre ,ddc:530 ,010306 general physics - Abstract
We use the Low Frequency Array (LOFAR) to probe the dynamics of the stepping process of negatively charged plasma channels (negative leaders) in a lightning discharge. We observe that at each step of a leader, multiple pulses of vhf (30-80 MHz) radiation are emitted in short-duration bursts (
- Published
- 2020
- Full Text
- View/download PDF
15. Precision Lightning Imaging with LOFAR
- Author
-
Tim Huege, Alex Pel, Heino Falcke, J. R. Hoerandel, Gia Trinh, Tobias Winchen, H. Pandya, Brian Hare, Pragati Mitra, G. K. Krampah, ter Sander Veen, Olaf Scholten, Antonio Bonardi, Arthur Corstanje, Anna Nelles, Laura Rossetto, Stijn Buitink, Katie Mulrey, and J. P. Rachen
- Subjects
Astronomy ,LOFAR ,Lightning ,Geology ,Remote sensing - Abstract
We report on the improvements of our lightning imaging technique over what was reported in Hare2019, where we map lightning in 3D using timing obtained from the cross-correlation of the signals from antenna pairs in broadband VHF (30 — 80 MHZ). We use the infrastructure offered by LOFAR (LOw Frequency Array), a software radio telescope.The infrastructure of LOFAR allows us to use a large number of simple dual-polarized dipole antennas arranged in stations of 48 antennas with a diameter of about 60m. We limit ourselves to the use of the Dutch stations only, which gives us baselines of up to 100 km. The data are sampled at 200 MHz giving 5 nanoseconds time between samples. We use LOFAR in the mode where it saves the full time-series spectra for five seconds for every antenna in the array. Upon a trigger, the data for all Dutch stations is stored for later off-line processing.In imaging a flash our bottleneck is to handle the confusion limit. Because of the high density of sources, pulses that are detected in one time-order in the first antenna may have changed order in a second that is at an appreciable distance from the first. The pulse density where this problem surfaces depends on the imaging technique. In our new imaging method we use an approach inspired by the Kalman-filter technique. In the presentation the new technique will be explained. This allows us to obtain a larger number of located sources as compared to the approach used in Hare2019 (sometimes as much as three times as many) which allows for a more detailed analysis of small structures seen in lightning.To show the strength of the new technique we show some images of positive and negative leader development as well as a return stroke. Hare2019: B. Hare et al., Nature 568, 360–363 (2019).
- Published
- 2020
16. On the cosmic-ray energy scale of the LOFAR radio telescope
- Author
-
Arthur Corstanje, A. Nelles, Katharine Mulrey, Brian Hare, Tobias Winchen, G. K. Krampah, Satyendra Thoudam, Tim Huege, Jörg P. Rachen, Olaf Scholten, Pragati Mitra, S. ter Veen, Stijn Buitink, T. N. G. Trinh, Jörg R. Hörandel, Heino Falcke, H. Pandya, Physics, Faculty of Sciences and Bioengineering Sciences, Elementary Particle Physics, and Astronomy
- Subjects
detector [cosmic radiation] ,air ,Astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,magnetic field ,Cosmic ray ,7. Clean energy ,01 natural sciences ,Electromagnetic radiation ,Radio telescope ,energy [cosmic radiation] ,electromagnetic [energy] ,0103 physical sciences ,plastics [scintillation counter] ,ddc:530 ,energy [radiation] ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,High Energy Astrophysical Phenomena (astro-ph.HE) ,astro-ph.HE ,Pierre Auger Observatory ,Physics ,010308 nuclear & particles physics ,Astrophysics::Instrumentation and Methods for Astrophysics ,Radiant energy ,Astronomy and Astrophysics ,LOFAR ,calibration ,Auger ,Computational physics ,observatory ,detector [radio wave] ,Air shower ,Antenna (radio) ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Instrumentation and Methods for Astrophysics ,Energy (signal processing) ,astro-ph.IM ,atmosphere [showers] - Abstract
Cosmic rays are routinely measured at LOFAR, both with a dense array of antennas and with the LOFAR Radboud air shower Array (LORA) which is an array of plastic scintillators. In this paper, we present two results relating to the cosmic-ray energy scale of LOFAR. First, we present the reconstruction of cosmic-ray energy using radio and particle techniques along with a discussion of the event-by-event and absolute scale uncertainties. The resulting energies reconstructed with each method are shown to be in good agreement, and because the radio-based reconstructed energy has smaller uncertainty on an event-to-event basis, LOFAR analyses will use that technique in the future. Second, we present the radiation energy of air showers measured at LOFAR and demonstrate how radiation energy can be used to compare the energy scales of different experiments. The radiation energy scales quadratically with the electromagnetic energy in an air shower, which can in turn be related to the energy of the primary particle. Once the local magnetic field is accounted for, the radiation energy allows for a direct comparison between the LORA particle-based energy scale and that of the Pierre Auger Observatory. They are shown to agree to within (6$\pm$20)% for a radiation energy of 1 MeV, where the uncertainty on the comparison is dominated by the antenna calibrations of each experiment. This study motivates the development of a portable radio array which will be used to cross-calibrate the energy scales of different experiments using radiation energy and the same antennas, thereby significantly reducing the uncertainty on the comparison.
- Published
- 2020
- Full Text
- View/download PDF
17. Properties of the Lunar Detection Mode for ZeV-Scale Particles with LOFAR
- Author
-
Anna Nelles, Arthur Corstanje, Olaf Scholten, Heino Falcke, Tobias Winchen, A. Hörandel, Pragati Mitra, T. N. G. Trinh, Brian Hare, Antonio Bonardi, Satyendra Thoudam, Jörg P. Rachen, S. ter Veen, Laura Rossetto, Stijn Buitink, Katie Mulrey, Pim Schellart, Astronomy and Astrophysics Research Group, Physics, and Faculty of Sciences and Bioengineering Sciences
- Subjects
Physics ,010308 nuclear & particles physics ,Astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,QC1-999 ,Detector ,Mode (statistics) ,Astrophysics::Instrumentation and Methods for Astrophysics ,Flux ,Cosmic ray ,LOFAR ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Physics::Geophysics ,Radio telescope ,Particle shower ,0103 physical sciences ,Astrophysics::Earth and Planetary Astrophysics ,010303 astronomy & astrophysics ,Energy (signal processing) - Abstract
The steep decrease of the flux of ultra-high energy cosmic rays (UHECR) provides a challenge to answer the long standing question about their origin and nature. A significant increase in detector volume may be achieved byemploying Earth’s moon as a detector that is read out using existing Earth-bound radio telescopes by searching for the radio pulses emitted by the particle shower in the lunar rock. In this contribution we will report on the properties of a corresponding detection mode currently under development for the LOFAR Radio telescope.
- Published
- 2019
- Full Text
- View/download PDF
18. Cosmic Ray Mass Measurements with LOFAR
- Author
-
Anna Nelles, Antonio Bonardi, Laura Rossetto, Olaf Scholten, Satyendra Thoudam, Pragati Mitra, Tobias Winchen, Sander ter Veen, Jörg P. Rachen, Jörg R. Hörandel, Heino Falcke, Stijn Buitink, Katie Mulrey, Arthur Corstanje, Pim Schellart, Gia Trinh, J. Emilio Enriquez, Research unit Astroparticle Physics, Physics, Astronomy and Astrophysics Research Group, and Faculty of Sciences and Bioengineering Sciences
- Subjects
Physics ,Range (particle radiation) ,010308 nuclear & particles physics ,Astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,QC1-999 ,Astrophysics::Instrumentation and Methods for Astrophysics ,Cosmic ray ,LOFAR ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Physics and Astronomy(all) ,01 natural sciences ,law.invention ,law ,0103 physical sciences ,Dipole antenna ,Mass analysis ,Particle density ,GeneralLiterature_REFERENCE(e.g.,dictionaries,encyclopedias,glossaries) ,010303 astronomy & astrophysics ,Energy (signal processing) ,Dense core - Abstract
In the dense core of LOFAR individual air showers are detected by hundreds of dipole antennas simultaneously. We reconstruct X max by using a hybrid technique that combines a two-dimensional fit of the radio profile to CoREAS simulations and a one-dimensional fit of the particle density distribution. For high-quality detections, the statistical uncertainty on X max is smaller than 20 g/cm 2 . We present results of cosmic-ray mass analysis in the energy regime of 10 17 - 10 17.5 eV. This range is of particular interest as it may harbor the transition from a Galactic to an extragalactic origin of cosmic rays.
- Published
- 2017
19. TEC, Trigger and Check, preparing LOFAR for Lunar observations
- Author
-
Jörg P. Rachen, Pim Schellart, Jörg R. Hörandel, Sander ter Veen, Olaf Scholten, Laura Rossetto, Katey Mulrey, Heino Falcke, J. Emilio Enriquez, Antonio Bonardi, Satyendra Thoudam, Gia Trinh, Anna Nelles, Stijn Buitink, Pragati Mitra, Tobias Winchen, Arthur Corstanje, Maaijke Mevius, Physics, Astronomy and Astrophysics Research Group, Faculty of Sciences and Bioengineering Sciences, and Research unit Astroparticle Physics
- Subjects
Physics ,Total electron content ,010308 nuclear & particles physics ,Aperture ,QC1-999 ,TEC ,Astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,Cosmic ray ,LOFAR ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Low frequency ,Physics and Astronomy(all) ,01 natural sciences ,Radio telescope ,0103 physical sciences ,Neutrino ,010303 astronomy & astrophysics ,GeneralLiterature_REFERENCE(e.g.,dictionaries,encyclopedias,glossaries) - Abstract
One of the main ways to use radio to detect Ultra High Energy Neutrinos and Cosmic Rays is the Lunar Askaryan technique, that uses the Moon as a target and searches for nanosecond pulses with large radio telescopes. To use low frequency aperture arrays, such as LOFAR and the SKA, pose new challenges and possibilities in detection techniques of short radio pulses and to measure the Total Electron Content (TEC). As a prepatory work, we have used other measurements that use similar techniques, or that can answer a specific question, with the LOFAR radio telescope. This contribution reports on our work on triggering on short radio signals, post-event imaging of radio signals from buffered data and methods to determine the TEC-value.
- Published
- 2017
- Full Text
- View/download PDF
20. Towards real-time identification of cosmic rays with LOw-Frequency ARray radio antennas
- Author
-
Arthur Corstanje, Jörg P. Rachen, Jörg R. Hörandel, Olaf Scholten, Heino Falcke, Antonio Bonardi, Anna Nelles, Pragati Mitra, Pim Schellart, Satyendra Thoudam, Gia Trinh, Tobias Winchen, J. Emilio Enriquez, Sander ter Veen, Stijn Buitink, Katie Mulrey, Laura Rossetto, Research unit Astroparticle Physics, Physics, Astronomy and Astrophysics Research Group, and Faculty of Sciences and Bioengineering Sciences
- Subjects
Astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,QC1-999 ,Cosmic ray ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Physics and Astronomy(all) ,Radiation ,Low frequency ,01 natural sciences ,Atmosphere ,Background noise ,0103 physical sciences ,010303 astronomy & astrophysics ,GeneralLiterature_REFERENCE(e.g.,dictionaries,encyclopedias,glossaries) ,Remote sensing ,Physics ,010308 nuclear & particles physics ,business.industry ,Electrical engineering ,Astrophysics::Instrumentation and Methods for Astrophysics ,LOFAR ,Identification (information) ,Experimental High Energy Physics ,Antenna (radio) ,business - Abstract
Cosmic rays entering the Earth's atmosphere produce Extensive Air Showers, which emit a radio signal through Geo-magnetic radiation and Askaryan emission. At the present time, one of the biggest challenges for assessing the Radio detection as a valuable technique for Cosmic-ray observation is to identify in real-time the very short (less than 100 ns) radio signals over the background noise. In this work, we present the latest updates on the real-time identification of radio signals from Extensive Air Showers by using the data from LOFAR Low Band Antenna stations, which are sensitive in the 30-80 MHz region.
- Published
- 2017
- Full Text
- View/download PDF
21. The mass composition of cosmic rays measured with LOFAR
- Author
-
Pim Schellart, Stijn Buitink, Katie Mulrey, Anna Nelles, Satyendra Thoudam, Tobias Winchen, Heino Falcke, Arthur Corstanje, T. N. G. Trinh, Jörg P. Rachen, S. ter Veen, Jörg R. Hörandel, Laura Rossetto, Olaf Scholten, Antonio Bonardi, Pragati Mitra, and Research unit Astroparticle Physics
- Subjects
Physics::Instrumentation and Detectors ,Astronomy ,QC1-999 ,Astrophysics::High Energy Astrophysical Phenomena ,Cosmic ray ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Electron ,Astrophysics ,01 natural sciences ,law.invention ,Atmosphere ,law ,0103 physical sciences ,Ultra-high-energy cosmic ray ,GeneralLiterature_REFERENCE(e.g.,dictionaries,encyclopedias,glossaries) ,010303 astronomy & astrophysics ,Physics::Atmospheric and Oceanic Physics ,Astroparticle physics ,Physics ,PAMELA detector ,010308 nuclear & particles physics ,Astrophysics::Instrumentation and Methods for Astrophysics ,LOFAR ,Air shower ,High Energy Physics::Experiment - Abstract
High-energy cosmic rays, impinging on the atmosphere of the Earth initiate cascades of secondary particles, the extensive air showers. The electrons and positrons in the air shower emit electromagnetic radiation. This emission is detected with the LOFAR radio telescope in the frequency range from 30 to 240 MHz. The data are used to determine the properties of the incoming cosmic rays. The radio technique is now routinely used to measure the arrival direction, the energy, and the particle type (atomic mass) of cosmic rays in the energy range from 1017 to 1018 eV. This energy region is of particular astrophysical interest, since in this regime a transition from a Galactic to an extra-galactic origin of cosmic rays is expected. For illustration, the LOFAR results are used to set constraints on models to describe the origin of high-energy cosmic rays.
- Published
- 2017
22. Updated Calibration of the LOFAR Low-Band Antennas
- Author
-
Heino Falcke, T.N.G. Trinh, Arthur Corstanje, Tobias Winchen, Pim Schellart, Brian Hare, Satyendra Thoudam, J. P. Rachen, Stijn Buitink, Katie Mulrey, S. ter Veen, Jörg R. Hörandel, Laura Rossetto, Anna Nelles, Olaf Scholten, Pragati Mitra, Antonio Bonardi, Astronomy and Astrophysics Research Group, Physics, and Faculty of Sciences and Bioengineering Sciences
- Subjects
Physics ,010308 nuclear & particles physics ,QC1-999 ,Astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,LOFAR ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Signal chain ,Frequency spectrum ,law.invention ,Telescope ,Air shower ,law ,0103 physical sciences ,Range (statistics) ,Calibration ,010306 general physics ,Energy (signal processing) ,Remote sensing - Abstract
The LOw-Frequency ARray (LOFAR) telescope measures radio emission from air showers. In order to interpret the data, an absolute, frequency dependent calibration is required. Due to a growing need for a better understanding of the measured frequency spectrum, we revisit the calibration of the LOFAR antennas in the range of 30—80 MHz. Using the galactic radio emission and a detailed model of the LOFAR signal chain, we find a calibration that provides an absolute energy scale and allows us to study frequency dependent features in measured air shower signals.
- Published
- 2019
23. Cosmic Ray Physics with the LOFAR Radio Telescope
- Author
-
Tobias Winchen, Anna Nelles, Katharine Mulrey, Jörg R. Hörandel, Heino Falcke, T. N. G. Trinh, Stijn Buitink, Brian Hare, Pragati Mitra, Arthur Corstanje, Jörg P. Rachen, Satyendra Thoudam, S. ter Veen, Laura Rossetto, Pim Schellart, A. Bonardi, Olaf Scholten, Physics, Astronomy and Astrophysics Research Group, Faculty of Sciences and Bioengineering Sciences, Elementary Particle Physics, and Faculty of Economic and Social Sciences and Solvay Business School
- Subjects
History ,Precision testing ,Astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,Measure (physics) ,FOS: Physical sciences ,Cosmic ray ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Education ,Radio telescope ,0103 physical sciences ,010303 astronomy & astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Astrophysics::Galaxy Astrophysics ,Astroparticle physics ,Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,astro-ph.HE ,010308 nuclear & particles physics ,Astrophysics::Instrumentation and Methods for Astrophysics ,LOFAR ,Computer Science Applications ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Instrumentation and Methods for Astrophysics ,astro-ph.IM - Abstract
The LOFAR radio telescope is able to measure the radio emission from cosmic ray induced air showers with hundreds of individual antennas. This allows for precision testing of the emission mechanisms for the radio signal as well as determination of the depth of shower maximum $X_{\max}$, the shower observable most sensitive to the mass of the primary cosmic ray, to better than 20 g/cm$^2$. With a densely instrumented circular area of roughly 320 m$^2$, LOFAR is targeting for cosmic ray astrophysics in the energy range $10^{16}$ - $10^{18}$ eV. In this contribution we give an overview of the status, recent results, and future plans of cosmic ray detection with the LOFAR radio telescope., Comment: Proceedings of the 26th Extended European Cosmic Ray Symposium (ECRS), Barnaul/Belokurikha, 2018
- Published
- 2019
- Full Text
- View/download PDF
24. A large light-mass component of cosmic rays at 10(17)-10(17.5) electronvolts from radio observations
- Author
-
Vishambhar Pandey, D. D. Mulcahy, M. A. Garrett, J. van Leeuwen, Tim Hassall, Adam Deller, Harvey Butcher, D. Engels, H. Paas, John Conway, J. E. Enriquez, A. I. F. Stewart, M. Pandey-Pommier, Matthias Steinmetz, Rob Fender, B. Ciardi, M. Pietka, E. Juette, G. van Diepen, P. N. Best, M. C. Toribio, A. Horneffer, Chiara Ferrari, M. P. van Haarlem, S. Duscha, Mark J. Bentum, Stefan J. Wijnholds, Jochen Eislöffel, Sarod Yatawatta, Emanuela Orrú, M. Kuniyoshi, Michael Kramer, Anna Nelles, C. Vogt, R. J. van Weeren, Martin Bell, Maaijke Mevius, John D. Swinbank, P. Maat, Matthias Hoeft, M. J. Norden, Pim Schellart, D. McKay-Bukowski, J. A. Zensus, John McKean, Dominik J. Schwarz, Richard Fallows, Aris Karastergiou, Ph. Zarka, V. I. Kondratiev, T. N. G. Trinh, Stijn Buitink, Heino Falcke, Michael W. Wise, Jörg P. Rachen, Benjamin Stappers, Jason W. T. Hessels, J. Sluman, Gianni Bernardi, Jörg R. Hörandel, I. M. Avruch, James M. Anderson, F. de Gasperin, Frank Breitling, Roberto Pizzo, H. J. A. Röttgering, Satyendra Thoudam, G. Kuper, Olaf Wucknitz, M. Serylak, H. Munk, Wilfred Frieswijk, Ashish Asgekar, Marcus Brüggen, M. Iacobelli, Y. Tang, W. Reich, S. ter Veen, A. W. Gunst, Anna M. M. Scaife, Laura Rossetto, Ralph A. M. J. Wijers, A. G. Polatidis, Rebecca McFadden, Arthur Corstanje, Annalisa Bonafede, Christian Vocks, G. M. Loose, Sera Markoff, Jean-Mathias Grießmeier, Michel Tagger, D. Carbone, R. C. Vermeulen, T. Huege, Olaf Scholten, Oleg Smirnov, Huib Intema, Cyril Tasse, J. W. Broderick, E. de Geus, R. J. Dettmar, George Heald, W. N. Brouw, Gottfried Mann, High Energy Astrophys. & Astropart. Phys (API, FNWI), Radboud University [Nijmegen], Netherlands Institute for Radio Astronomy (ASTRON), Karlsruhe Institute of Technology (KIT), University of Groningen [Groningen], Institute for Mathematics, Astrophysics and Particle Physics (IMAPP), Laboratoire Analyse, Géométrie et Applications (LAGA), Université Paris 8 Vincennes-Saint-Denis (UP8)-Université Paris 13 (UP13)-Institut Galilée-Centre National de la Recherche Scientifique (CNRS), Institute for Mathematics Applied to Geoscience, National Center for Atmospheric Research [Boulder] (NCAR), SRON Netherlands Institute for Space Research (SRON), Australia Telescope National Facility (ATNF), Commonwealth Scientific and Industrial Research Organisation [Canberra] (CSIRO), University of Edinburgh, Jacobs University [Bremen], Leibniz-Institut für Astrophysik Potsdam (AIP), University of Southampton, Kapteyn Astronomical Institute [Groningen], University of Amsterdam [Amsterdam] (UvA), Max Planck Institute for Astrophysics, Max-Planck-Gesellschaft, Onsala Space Observatory, Dept. of Radio and Space Science, Chalmers University of Technology, Chalmers University of Technology [Göteborg], Hamburger Sternwarte/Hamburg Observatory, Universität Hamburg (UHH), Medstar Research Institute, Astronomisches Institut der Ruhr-Universität Bochum, Ruhr-Universität Bochum [Bochum], Thüringer Landessternwarte Tautenburg (TLS), SETI Institute, Institute of Mathematical and Physical Sciences, Département de Géologie, Université de Montréal (UdeM), Leiden Observatory [Leiden], Universiteit Leiden, Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Unité Scientifique de la Station de Nançay (USN), Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Jodrell Bank Centre for Astrophysics, University of Manchester [Manchester], Max-Planck-Institut für Radioastronomie (MPIFR), Oxford Astrophysics, University of Oxford, Columbia Astrophysics Laboratory (CAL), Columbia University [New York], Astronomical Institute Anton Pannekoek (AI PANNEKOEK), University of Oulu, Center for Information Technology CIT, Université de Groningen, Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), National Radio Astronomy Observatory [Charlottesville] (NRAO), National Radio Astronomy Observatory (NRAO), School of Physics and Astronomy [Southampton], Interactions Son Musique Mouvement, Sciences et Technologies de la Musique et du Son (STMS), Institut de Recherche et Coordination Acoustique/Musique (IRCAM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche et Coordination Acoustique/Musique (IRCAM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Rhodes University, Grahamstown, Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH / Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures (DSMZ), Laboratory for Atmospheric and Space Physics [Boulder] (LASP), University of Colorado [Boulder], Université Paris-Sud - Paris 11 (UP11), SKA South Africa, Ska South Africa, Galaxies, Etoiles, Physique, Instrumentation (GEPI), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Finca El Encin, Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), Argelander-Institut für Astronomie (AlfA), Rheinische Friedrich-Wilhelms-Universität Bonn, Observatoire de Paris - Site de Paris (OP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, European Project: 227610,EC:FP7:ERC,ERC-2008-AdG,LOFAR-AUGER(2009), European Project: 640130,H2020,ERC-2014-STG,LOFAR(2015), Radboud university [Nijmegen], Institute for Nuclear Physics (IKP), Karlsruhe Institute of Technology, nstitute for Nuclear Physics (IKP), Karlsruhe Institute of Technology, Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Institut Galilée-Université Paris 13 (UP13), Universiteit Leiden [Leiden], Centre National de la Recherche Scientifique (CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), University of Oxford [Oxford], École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Research unit Astroparticle Physics, Astronomy, and Kapteyn Astronomical Institute
- Subjects
TELESCOPE ,High-energy astronomy ,Astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,Cosmic ray ,Astrophysics ,Electron ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Radiation ,EXTENSIVE AIR-SHOWERS ,01 natural sciences ,0103 physical sciences ,010303 astronomy & astrophysics ,Astroparticle physics ,Physics ,Multidisciplinary ,COSMIC cancer database ,010308 nuclear & particles physics ,Astrophysics::Instrumentation and Methods for Astrophysics ,LOFAR ,ENERGY-SPECTRUM ,SIMULATIONS ,PULSES ,High-energy astrophysics ,Air shower ,13. Climate action ,[SDU]Sciences of the Universe [physics] ,ARRAY ,Neutrino ,Particle astrophysics ,EMISSION - Abstract
Cosmic rays are the highest-energy particles found in nature. Measurements of the mass composition of cosmic rays with energies of 1017–1018 electronvolts are essential to understanding whether they have galactic or extragalactic sources. It has also been proposed that the astrophysical neutrino signal1 comes from accelerators capable of producing cosmic rays of these energies2. Cosmic rays initiate air showers—cascades of secondary particles in the atmosphere—and their masses can be inferred from measurements of the atmospheric depth of the shower maximum3 (Xmax; the depth of the air shower when it contains the most particles) or of the composition of shower particles reaching the ground4. Current measurements5 have either high uncertainty, or a low duty cycle and a high energy threshold. Radio detection of cosmic rays6,7,8 is a rapidly developing technique9 for determining Xmax (refs 10, 11) with a duty cycle of, in principle, nearly 100 per cent. The radiation is generated by the separation of relativistic electrons and positrons in the geomagnetic field and a negative charge excess in the shower front6,12. Here we report radio measurements of Xmax with a mean uncertainty of 16 grams per square centimetre for air showers initiated by cosmic rays with energies of 1017–1017.5 electronvolts. This high resolution in Xmax enables us to determine the mass spectrum of the cosmic rays: we find a mixed composition, with a light-mass fraction (protons and helium nuclei) of about 80 per cent. Unless, contrary to current expectations, the extragalactic component of cosmic rays contributes substantially to the total flux below 1017.5 electronvolts, our measurements indicate the existence of an additional galactic component, to account for the light composition that we measured in the 1017–1017.5 electronvolt range.
- Published
- 2019
- Full Text
- View/download PDF
25. Calibration of the LOFAR low-band antennas using the Galaxy and a model of the signal chain
- Author
-
Olaf Scholten, Heino Falcke, Antonio Bonardi, Tobias Winchen, S. ter Veen, Stijn Buitink, Katie Mulrey, Arthur Corstanje, Pim Schellart, Laura Rossetto, T. N. G. Trinh, Anna Nelles, Satyendra Thoudam, Brian Hare, Jörg R. Hörandel, Pragati Mitra, Jörg P. Rachen, T. Huege, Astronomy and Astrophysics Research Group, Physics, and Elementary Particle Physics
- Subjects
Astroparticle physics ,Physics ,Spectral shape analysis ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Astronomy ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Astronomy and Astrophysics ,Cosmic ray ,LOFAR ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,7. Clean energy ,Signal ,Signal chain ,Computational physics ,0103 physical sciences ,ddc:540 ,Calibration ,Astrophysics - Instrumentation and Methods for Astrophysics ,010303 astronomy & astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Energy (signal processing) ,astro-ph.IM - Abstract
The LOw-Frequency ARray (LOFAR) is used to make precise measurements of radio emission from extensive air showers, yielding information about the primary cosmic ray. Interpreting the measured data requires an absolute and frequency-dependent calibration of the LOFAR system response. This is particularly important for spectral analyses, because the shape of the detected signal holds information about the shower development. We revisit the calibration of the LOFAR antennas in the range of 30 - 80 MHz. Using the Galactic emission and a detailed model of the LOFAR signal chain, we find an improved calibration that provides an absolute energy scale and allows for the study of frequency-dependent features in measured signals. With the new calibration, systematic uncertainties of 13% are reached, and comparisons of the spectral shape of calibrated data with simulations show promising agreement., Comment: 23 pages, 10 figures
- Published
- 2019
- Full Text
- View/download PDF
26. Needle-like structures discovered on positively charged lightning branches
- Author
-
S. ter Veen, A. W. Gunst, M. A. Garrett, Laura Rossetto, A. J. van der Horst, J.-M. Grießmeier, R. Blaauw, Mark J. Bentum, R. J. van Weeren, Jörg P. Rachen, B. Ciardi, Pietro Zucca, Heino Falcke, R. Pekal, Aleksandar Shulevski, Anna Nelles, P. Maat, M. J. Norden, H. Paas, James M. Anderson, Stijn Buitink, Katie Mulrey, Richard Fallows, M. C. Toribio, J. Sluman, Luitje Koopmans, Olaf Scholten, Oleg Smirnov, Jörg R. Hörandel, Jochen Eislöffel, Roberto Pizzo, Hanna Rothkaehl, H. J. A. Röttgering, Harvey Butcher, P. Zarka, Olaf Wucknitz, Antonia Rowlinson, T. N. G. Trinh, Andrzej Krankowski, S. Duscha, Arthur Corstanje, Tim Huege, I. M. Avruch, Vishambhar Pandey, Ralph A. M. J. Wijers, M. Iacobelli, Pragati Mitra, Jason W. T. Hessels, Matthias Hoeft, A. van Ardenne, Tobias Winchen, Antonio Bonardi, Dominik J. Schwarz, W. N. Brouw, Brian Hare, Michel Tagger, W. Reich, J. W. Broderick, E. de Geus, Pim Schellart, Marcus Brüggen, M. P. van Haarlem, M. Pandey-Pommier, Joseph R. Dwyer, Marian Soida, High Energy Astrophys. & Astropart. Phys (API, FNWI), KVI Center for Advanced Radiation Technology, University of Groningen [Groningen], Radboud university [Nijmegen], Institute for Mathematics, Astrophysics and Particle Physics (IMAPP), Netherlands Institute for Radio Astronomy (ASTRON), Astrophysical Institute, Vrije Universiteit Brussel, Vrije Universiteit [Brussels] (VUB), Karlsruher Institut für Technologie (KIT), Milieux aquatiques, écologie et pollutions (UR MALY), Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA), SRON Netherlands Institute for Space Research (SRON), University of Southampton, Kapteyn Astronomical Institute [Groningen], Jacobs University [Bremen], Research School of Astronomy and Astrophysics [Canberra] (RSAA), Australian National University (ANU), Max Planck Institute for Astrophysics, Max-Planck-Gesellschaft, Medstar Research Institute, Thüringer Landessternwarte Tautenburg (TLS), Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Centre National d’Études Spatiales [Paris] (CNES), Unité Scientifique de la Station de Nançay (USN), Université d'Orléans (UO)-Observatoire des Sciences de l'Univers en région Centre (OSUC), PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-Centre National de la Recherche Scientifique (CNRS), Leiden Observatory [Leiden], Universiteit Leiden [Leiden], Institute of Geodesy, Center for Information Technology CIT, Université de Groningen, Centre de Recherche Astrophysique de Lyon (CRAL), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon), Department of Applied Chemistry (DAC), Banaras Hindu University [Varanasi] (BHU), Max-Planck-Institut für Radioastronomie (MPIFR), Space Research Centre of Polish Academy of Sciences (CBK), Polska Akademia Nauk (PAN), Argelander-Institut für Astronomie (AlfA), Rheinische Friedrich-Wilhelms-Universität Bonn, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), European Project: 227610,EC:FP7:ERC,ERC-2008-AdG,LOFAR-AUGER(2009), European Project: 640130,H2020,ERC-2014-STG,LOFAR(2015), Center for Wireless Technology Eindhoven, Electromagnetics, EM for Radio Science Lab, Physics, Elementary Particle Physics, Astronomy and Astrophysics Research Group, Department of Bio-engineering Sciences, Faculty of Sciences and Bioengineering Sciences, Radboud University [Nijmegen], Vrije Universiteit Brussel (VUB), Global Aerospace, Adran Ffiseg, Prifysgol Cymru Aberystwyth, Universiteit Leiden, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Department of Physics the George Washington University, Space Radio-Diagnostic Research Center [Olsztyn], University of Warmia and Mazury [Olsztyn], Polska Akademia Nauk = Polish Academy of Sciences (PAN), Interactions Son Musique Mouvement, Sciences et Technologies de la Musique et du Son (STMS), Institut de Recherche et Coordination Acoustique/Musique (IRCAM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche et Coordination Acoustique/Musique (IRCAM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Rhodes University, Grahamstown, Astronomical Institute Anton Pannekoek (AI PANNEKOEK), University of Amsterdam [Amsterdam] (UvA), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-IRCAM-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-IRCAM-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Astronomy, and Research unit Astroparticle Physics
- Subjects
[PHYS]Physics [physics] ,Physics ,Multidisciplinary ,010504 meteorology & atmospheric sciences ,Astronomy ,010502 geochemistry & geophysics ,01 natural sciences ,Lightning ,[SDU]Sciences of the Universe [physics] ,Natural phenomenon ,ddc:530 ,Spatiotemporal resolution ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Initiation point ,0105 earth and related environmental sciences - Abstract
Nature / Physical science 568(7752), 360 - 363 (2019). doi:10.1038/s41586-019-1086-6, Lightning is a dangerous yet poorly understood natural phenomenon. Lightning forms a network of plasma channels propagating away from the initiation point with both positively and negatively charged ends—called positive and negative leaders. Negative leaders propagate in discrete steps, emitting copious radio pulses in the 30–300-megahertz frequency band that can be remotely sensed and imaged with high spatial and temporal resolution. Positive leaders propagate more continuously and thus emit very little high-frequency radiation. Radio emission from positive leaders has nevertheless been mapped, and exhibits a pattern that is different from that of negative leaders. Furthermore, it has been inferred that positive leaders can become transiently disconnected from negative leaders, which may lead to current pulses that both reconnect positive leaders to negative leaders and cause multiple cloud-to-ground lightning events. The disconnection process is thought to be due to negative differential resistance, but this does not explain why the disconnections form primarily on positive leaders, or why the current in cloud-to-ground lightning never goes to zero. Indeed, it is still not understood how positive leaders emit radio-frequency radiation or why they behave differently from negative leaders. Here we report three-dimensional radio interferometric observations of lightning over the Netherlands with unprecedented spatiotemporal resolution. We find small plasma structures—which we call ‘needles’—that are the dominant source of radio emission from the positive leaders. These structures appear to drain charge from the leader, and are probably the reason why positive leaders disconnect from negative ones, and why cloud-to-ground lightning connects to the ground multiple times., Published by Macmillan28177, London
- Published
- 2019
- Full Text
- View/download PDF
27. The energy scale of cosmic rays detected with LOFAR
- Author
-
Pragati Mitra, Hershal Pandya, T. N. G. Trinh, Stijn Buitink, Katie Mulrey, Tobias Winchen, Jörg P. Rachen, Heino Falcke, Arthur Corstanje, A. Nelles, Antonio Bonardi, G. K. Krampah, Jörg R. Hörandel, S. ter Veen, Laura Rossetto, T. Huege, Olaf Scholten, and Brian Hare
- Subjects
Physics ,Range (particle radiation) ,Physics::Instrumentation and Detectors ,Astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,Radiant energy ,Cosmic ray ,Astrophysics::Cosmology and Extragalactic Astrophysics ,LOFAR ,Scintillator ,Computational physics ,Air shower ,ddc:530 ,Antenna (radio) ,Energy (signal processing) - Abstract
The LOw-Frequency ARray (LOFAR) measures radio emission from extensive air showers. Precise knowledge of the electric field at each antenna in the $30-80$ MHz range is obtained using a newly developed, frequency-dependent calibration built on knowledge of the Galactic emission and a detailed model of the signal chain. The energy fluence for each event is then determined, allowing for the calculation of the radiation energy of the air shower. The radiation energy, corrected for geometrical effects, scales quadratically with the energy contained in the electromagnetic component of the air shower. These measurements, combined with predictions that rely only on first-principle electrodynamics, provide an energy estimate for the primary particle. In this contribution we present the radio-based energy scale of cosmic rays detected with LOFAR, and compare it to particle-based energy measurements made using the scintillator array located at the LOFAR core.
- Published
- 2019
- Full Text
- View/download PDF
28. Status of the Lunar Detection Mode for Cosmic Particles of LOFAR
- Author
-
T. N. G. Trinh, Brian Hare, Satyendra Thoudam, Stijn Buitink, Olaf Scholten, Katharine Mulrey, Anna Nelles, Heino Falcke, Pragati Mitra, Tobias Winchen, Arthur Corstanje, A. Bonardi, S. ter Veen, Laura Rossetto, Pim Schellart, Jörg P. Rachen, Jörg R. Hörandel, Physics, Astronomy and Astrophysics Research Group, Faculty of Sciences and Bioengineering Sciences, Elementary Particle Physics, and Faculty of Economic and Social Sciences and Solvay Business School
- Subjects
History ,Astrophysics::High Energy Astrophysical Phenomena ,Astronomy ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Low frequency ,01 natural sciences ,Education ,Askaryan effect ,Radio telescope ,0103 physical sciences ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,010303 astronomy & astrophysics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Astroparticle physics ,Physics ,astro-ph.HE ,COSMIC cancer database ,010308 nuclear & particles physics ,Mode (statistics) ,Astrophysics::Instrumentation and Methods for Astrophysics ,LOFAR ,Computer Science Applications ,Orders of magnitude (time) ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Instrumentation and Methods for Astrophysics ,astro-ph.IM - Abstract
Cosmic particles hitting Earth's moon produce radio emission via the Askaryan effect. If the resulting radio ns-pulse can be detected by radio telescopes, this technique potentially increases the available collective area for ZeV scale particles by several orders of magnitude compared to current experiments. The LOw Frequency ARray (LOFAR) is the largest radio telescope operating in the optimum frequency regime for this technique. In this contribution, we report on the status of the implementation of the lunar detection mode at LOFAR., Comment: Proceedings of the 26th Extended European Cosmic Ray Symposium (ECRS), Barnaul/Belokurikha, 2018
- Published
- 2019
29. The FRATS project
- Author
-
Arthur Corstanje, C. J. Law, Antonia Rowlinson, Jörg P. Rachen, Jean-Mathias Grießmeier, S. ter Veen, Heino Falcke, Jochen Eislöffel, P. Zarka, T Winchen, Laura Rossetto, J. E. Enriquez, J. W. Broderick, Antonio Bonardi, M. van den Akker, Jörg R. Hörandel, Anna Nelles, Pim Schellart, A. J. van der Horst, J. van Leeuwen, Rene P. Breton, Stephane Corbel, High Energy Astrophys. & Astropart. Phys (API, FNWI), Institute for Mathematics, Astrophysics and Particle Physics (IMAPP), Radboud university [Nijmegen], Jodrell Bank Centre for Astrophysics, University of Manchester [Manchester], Netherlands Institute for Radio Astronomy (ASTRON), Unité Scientifique de la Station de Nançay (USN), Université d'Orléans (UO)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut national des sciences de l'Univers (INSU - CNRS), Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Observatoire des Sciences de l'Univers en région Centre (OSUC), PSL Research University (PSL)-PSL Research University (PSL)-Centre National d’Études Spatiales [Paris] (CNES), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Radboud University [Nijmegen], Jodrell Bank Centre for Astrophysics (JBCA), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers en région Centre (OSUC), and Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)
- Subjects
010504 meteorology & atmospheric sciences ,media_common.quotation_subject ,Pilot survey ,general [Pulsars] ,Astrophysics ,Low frequency ,Surveys ,01 natural sciences ,surveys ,pulsars: general ,0103 physical sciences ,instrumentation: interferometers ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,media_common ,Physics ,[PHYS]Physics [physics] ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,techniques: high angular resolution ,Astronomy and Astrophysics ,interferometers [Instrumentation] ,LOFAR ,Polarization (waves) ,high angular resolution [Techniques] ,Space and Planetary Science ,Sky ,Radio frequency ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Four-frequency - Abstract
Context. In the previous decade, two new classes of fast radio transients were detected: the Galactic, rotating radio transients (RRATs) and the extragalactic fast radio bursts (FRBs). If the detectable emission of these objects extends to lower radio frequencies, the LOw Frequency ARray (LOFAR) is ideally suited to seek and localize these transients at frequencies of 10–250 MHz. This is due to LOFAR’s sensitivity, diverse beamform capabilities, and transient buffers for the individual elements that allow post-event imaging of events, potentially at arcsecond resolution. Aims. Our aim is to identify and localize pulses at frequencies below 250 MHz and, in the case of nondetections, derive upper limits on the sky and volume rates of FRBs. Methods. A real-time search program for fast radio transients is installed on the LOFAR systems which runs commensally with other observations, and uses the wide incoherent LOFAR beam (11.25 deg2 at 150 MHz). Buffered data from hundreds of dipoles are used to reconstruct the direction and polarization information of the event, and to distinguish between celestial, terrestrial, and instrumental origins. Results. Observations were taken covering either the frequency range 119–151 MHz or in four frequency bands, each of 2 MHz in width, centered at 124, 149, 156, and 185 MHz. A first pilot survey covered a range of dispersion measures (DM) below 120 pc cm−3, focusing on Galactic sources, and resulted in an upper limit on the transient rate at LOFAR frequencies of less than 1500 events per sky per day above a fluency of 1.6 kJy ms for an 8-ms pulse. A second pilot survey covered a range of DMs below 500 pc cm−3, focusing on extragalactic sources to about 1 Gpc, and resulted in an upper limit of 1400 events per sky per day above a fluency of 6.0 kJy ms for an 8-ms pulse. Using a model for the distance-DM relationship, this equates to an upper limit of 134 events per Gpc3 per day.
- Published
- 2019
- Full Text
- View/download PDF
30. Influence of atmospheric electric fields on the radio emission from extensive air showers
- Author
-
Heino Falcke, J. E. Enriquez, Pim Schellart, K. D. de Vries, Jörg P. Rachen, Jörg R. Hörandel, Ute Ebert, A. Nelles, Casper Rutjes, T. N. G. Trinh, Arthur Corstanje, A.M. van den Berg, Satyendra Thoudam, S. ter Veen, Laura Rossetto, Stijn Buitink, Christoph Köhn, Olaf Scholten, Elementary Processes in Gas Discharges, Research unit Astroparticle Physics, Physics, Elementary Particle Physics, and Astronomy and Astrophysics Research Group
- Subjects
THUNDERSTORMS ,Astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Radiation ,01 natural sciences ,Physics::Geophysics ,PHYSICS ,Electric field ,0103 physical sciences ,010306 general physics ,Physics::Atmospheric and Oceanic Physics ,Astroparticle physics ,Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,010308 nuclear & particles physics ,FLASHES ,Astrophysics::Instrumentation and Methods for Astrophysics ,LOFAR ,Polarization (waves) ,SIMULATIONS ,Computational physics ,MODEL ,Physics - Atmospheric and Oceanic Physics ,13. Climate action ,Atmospheric and Oceanic Physics (physics.ao-ph) ,Thunderstorm ,ComputingMethodologies_DOCUMENTANDTEXTPROCESSING ,RADIATION ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
The atmospheric electric fields in thunderclouds have been shown to significantly modify the intensity and polarization patterns of the radio footprint of cosmic-ray-induced extensive air showers. Simulations indicated a very nonlinear dependence of the signal strength in the frequency window of 30-80 MHz on the magnitude of the atmospheric electric field. In this work we present an explanation of this dependence based on Monte Carlo simulations, supported by arguments based on electron dynamics in air showers and expressed in terms of a simplified model. We show that by extending the frequency window to lower frequencies, additional sensitivity to the atmospheric electric field is obtained.
- Published
- 2016
- Full Text
- View/download PDF
31. Investigating Thunderstorm Electric Fields using Radio Emission from Cosmic-Ray Air Showers
- Author
-
Olaf Scholten, Gia Trinh, Brian Hare, Casper Rutjes, Ute Ebert, Joerg Rachen, Laura Rossetto, Antonio Bonardi, Anna Nelles, Heino Falcke, Sander ter Veen, Tobias Winchen, Stijn Buitink, Arthur Corstanje, Joerg Hoerandel, Pragati Mitra, Katthy Mulrey, and Research unit Astroparticle Physics
- Subjects
Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics - Abstract
We report on an investigation of the atmospheric electric field during thunder storm conditions over the core of LOFAR, the Low-Frequency Array, for 11 events in the period of December 2011 till September 2014 using a non-intrusive detection method based on the detection of radio emission from cosmic-ray air showers. LOFAR is a software radio telescope primarily used for astronomy and build from a large number of simple dipole antennas. The core of LOFAR, where the antenna density is highest, lies in the northern part of The Netherlands. Energetic cosmic rays penetrating the atmosphere create a particle avalanche. The atmospheric electric fields induce electric currents in the plasma at the front of this avalanche. These currents emit radio waves since their strength varies as function of distance to the ground. The atmospheric electric fields can be deduced from the polarization and intensity pattern of the emitted radio waves in the frequency band of 30-80 MHz as measured for each cosmic-ray event at LOFAR. Here we report on the analysis of several events. Most of the events we measure are consistent with the lower positive charge regions occurring near the 0 isotherm as determined from GDAS data. We have observed rather large horizontal component of the electric fields. In some cases where there is clear triple layered structure while there are also some where only two charge layers are detected. T.N.G. Trinh, et al., Phys. Rev. D 95, 083004 (2017); arXiv:1703.06008
- Published
- 2018
32. LOFAR lightning imaging: mapping lightning with nanosecond precision
- Author
-
Hidde Leijnse, Antonio Bonardi, Jörg P. Rachen, Jörg R. Hörandel, T. N. G. Trinh, Pragati Mitra, Casper Rutjes, Arthur Corstanje, Olaf Scholten, Pim Schellart, Satyendra Thoudam, Tobias Winchen, Ute Ebert, Anna Nelles, S. ter Veen, Laura Rossetto, Heino Falcke, Stijn Buitink, Katie Mulrey, Brian Hare, Elementary Processes in Gas Discharges, Applied Physics and Science Education, and Research unit Astroparticle Physics
- Subjects
Atmospheric Science ,010504 meteorology & atmospheric sciences ,Astronomy ,01 natural sciences ,Radio telescope ,Flash (photography) ,Time of arrival ,0103 physical sciences ,Earth and Planetary Sciences (miscellaneous) ,GeneralLiterature_REFERENCE(e.g.,dictionaries,encyclopedias,glossaries) ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Remote sensing ,Spatial structure ,LOFAR ,Nanosecond ,leader propagation ,Lightning ,Geophysics ,time of arrival ,Space and Planetary Science ,Mapping system ,lightning mapping ,ARRAY ,lightning - Abstract
Lightning mapping technology has proven instrumental in understanding lightning. In this work we present a pipeline that can use lightning observed by the LOw-Frequency ARray (LOFAR) radio telescope to construct a 3-D map of the flash. We show that LOFAR has unparalleled precision, on the order of meters, even for lightning flashes that are over 20km outside the area enclosed by LOFAR antennas (approximate to 3,200km(2)), and can potentially locate over 10,000 sources per lightning flash. We also show that LOFAR is the first lightning mapping system that is sensitive to the spatial structure of the electrical current during individual lightning leader steps.
- Published
- 2018
33. LOFAR discovery of a quiet emission mode in PSR B0823+26
- Author
-
F. Breitling, Gottfried Mann, R. Pizzo, John D. Anderson, Cees Bassa, Sera Markoff, Rene P. Breton, Ashish Asgekar, Charlotte Sobey, E. Jütte, George Heald, Heino Falcke, P. Maat, M. J. Norden, M. A. Garrett, Jean-Mathias Grießmeier, Ph. Zarka, Rebecca McFadden, H. Paas, Ben Stappers, E. de Geus, Sarod Yatawatta, V. I. Kondratiev, D. D. Mulcahy, J. van Leeuwen, S. ter Veen, M. Pilia, M. Pandey-Pommier, Ralph A. M. J. Wijers, A. W. Gunst, J. Sluman, Olaf Wucknitz, H. J. A. Röttgering, Philip Best, Christian Vocks, D. McKay-Bukowski, Michel Tagger, D. Carbone, A. Alexov, Andrew Lyne, Antonia Rowlinson, A. Noutsos, Adam Stewart, Chiara Ferrari, T. E. Hassall, Evan Keane, Patrick Weltevrede, Jason W. T. Hessels, Satyendra Thoudam, S. Duscha, M. Serylak, A. van Duin, G. Pietka, Laura Birzan, Jochen Eislöffel, J. P. Hamaker, Wilfred Frieswijk, C. Toribio, Michael Kramer, D. A. Rafferty, A. G. Polatidis, Arthur Corstanje, A. Nelles, John D. Swinbank, Y. Tang, Anna M. M. Scaife, Martin Bell, N. J. Young, V. N. Pandey, Gerard H. Kuper, Cyril Tasse, J. W. Broderick, H. Munk, John McKean, Marcus Brüggen, Matthias Steinmetz, Annalisa Bonafede, A. Renting, Richard Fallows, R. Vermeulen, Mark J. Bentum, Matthias Hoeft, M. de Vos, Aris Karastergiou, Michael W. Wise, Gianni Bernardi, Jörg R. Hörandel, Rob Fender, Oleg Smirnov, Emanuela Orru, Dominik J. Schwarz, I. M. Avruch, Anna V. Bilous, R. J. van Weeren, Sobey, C., Young, N.J., Hessels, J.W.T., Weltevrede, P., Noutsos, A., Stappers, B.W., Kramer, M., Bassa, C., Lyne, A.G., Kondratiev V.I., null, Hassall, T.E., Keane, E.F., Bilous, A.V., Breton, R.P., Grießmeier, J.M., Karastergiou, A., Pilia, M., Serylak, M., Ter Veen, S., Van Leeuwen, J., Alexov, A., Anderson, J., Asgekar, A., Avruch, I.M., Bell, M.E., Bentum, M.J., Bernardi, G., Best, P., Bĭrzan, L., Bonafede, A., Breitling, F., Broderick, J., Brüggen, M., Corstanje, A., Carbone, D., De Geus, E., De Vos, M., Van Duin, A., Duscha, S., Eislöffel, J., Falcke, H., Fallows, R.A., Fender, R., Ferrari, C., Frieswijk, W., Garrett, M.A., Gunst, A.W., Hamaker, J.P., Heald, G., Hoeft, M., Hörandel, J., Jütte, E., Kuper, G., Maat, P., Mann, G., Markoff, S., McFadden, R., McKay-Bukowski, D., McKean, J.P., Mulcahy, D.D., Munk, H., Nelles, A., Norden, M.J., Orrù, E., Paas, H., Pandey-Pommier, M., Pandey, V.N., Pietka, G., Pizzo, R., Polatidis, A.G., Rafferty, D., Renting, A., Röttgering, H., Rowlinson, A., Scaife, A.M.M., Schwarz, D., Sluman, J., Smirnov, O., Steinmetz, M., Stewart, A., Swinbank, J., Tagger, M., Tang, Y., Tasse, C., Thoudam, S., Toribio, C., Vermeulen, R., Vocks, C., Van Weeren, R.J., Wijers, R.A.M.J., Wise, M.W., Wucknitz, O., Yatawatta, S., Zarka, P., Max-Planck-Institut für Radioastronomie (MPIFR), University of Minnesota [Twin Cities] (UMN), University of Minnesota System, University of Amsterdam [Amsterdam] (UvA), Jodrell Bank Centre for Astrophysics, University of Manchester [Manchester], Columbia Astrophysics Laboratory (CAL), Columbia University [New York], Cornell University [New York], Netherlands Institute for Radio Astronomy (ASTRON), Centre for Astrophysics and Supercomputing [Swinburne] (CAS), Swinburne University of Technology [Melbourne], Institute for Mathematics, Astrophysics and Particle Physics (IMAPP), Radboud University [Nijmegen], Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Unité Scientifique de la Station de Nançay (USN), Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Rhodes University, Grahamstown, Oxford Astrophysics, University of Oxford, Institute for Mathematics Applied to Geoscience, National Center for Atmospheric Research [Boulder] (NCAR), SRON Netherlands Institute for Space Research (SRON), CSIRO Astronomy and Space Science, Commonwealth Scientific and Industrial Research Organisation [Canberra] (CSIRO), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), University of Edinburgh, Leiden Observatory [Leiden], Universiteit Leiden, Jacobs University [Bremen], Leibniz-Institut für Astrophysik Potsdam (AIP), University of Southampton, Medstar Research Institute, Thüringer Landessternwarte Tautenburg (TLS), Institute of Mathematical and Physical Sciences, Département de Géologie, Université de Montréal (UdeM), University Bochum, Astronomical Institute Anton Pannekoek (AI PANNEKOEK), University of Oulu, Center for Information Technology CIT, Université de Groningen, Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), National Radio Astronomy Observatory [Charlottesville] (NRAO), National Radio Astronomy Observatory (NRAO), Department of Astronomy and Astrophysics [PennState], Pennsylvania State University (Penn State), Penn State System-Penn State System, School of Physics and Astronomy [Southampton], Interactions Son Musique Mouvement, Sciences et Technologies de la Musique et du Son (STMS), Institut de Recherche et Coordination Acoustique/Musique (IRCAM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche et Coordination Acoustique/Musique (IRCAM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH / Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures (DSMZ), Laboratory for Atmospheric and Space Physics [Boulder] (LASP), University of Colorado [Boulder], Université Paris-Sud - Paris 11 (UP11), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), SKA South Africa, Ska South Africa, Harvard-Smithsonian Center for Astrophysics (CfA), Harvard University-Smithsonian Institution, Argelander-Institut für Astronomie (AlfA), Rheinische Friedrich-Wilhelms-Universität Bonn, We would like to thank R. Karuppusamy for his help with the Effelsberg observations. CF acknowledges financial support by the Agence Nationale de la Recherche through grant ANR-09-JCJC-0001-01., European Project: 337062,EC:FP7:ERC,ERC-2013-StG,DRAGNET(2014), ITA, GBR, FRA, DEU, NLD, Radboud university [Nijmegen], Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National d’Études Spatiales [Paris] (CNES), Centre National de la Recherche Scientifique (CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Université Paris sciences et lettres (PSL)-Université d'Orléans (UO), University of Oxford [Oxford], Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC), Universiteit Leiden [Leiden], École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Harvard University [Cambridge]-Smithsonian Institution, Astronomy, and High Energy Astrophys. & Astropart. Phys (API, FNWI)
- Subjects
stars ,PSR B0823+26-radio telescopes ,Astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,Pulsar planet ,FOS: Physical sciences ,neutron- pulsars ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,neutron [stars] ,Pulsar ,Millisecond pulsar ,Pulsars: individual: PSR B0823+26 ,individual ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics ,Astroparticle physics ,Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy and Astrophysics ,LOFAR ,Astronomy and Astrophysic ,Stars: neutron ,Stars ,Neutron star ,Astrophysics - Solar and Stellar Astrophysics ,magnetosphere-pulsars ,[SDU]Sciences of the Universe [physics] ,Space and Planetary Science ,QUIET ,ComputingMethodologies_DOCUMENTANDTEXTPROCESSING ,Astrophysics - High Energy Astrophysical Phenomena ,individual: PSR B0823+26 [pulsars] - Abstract
PSR B0823+26, a 0.53-s radio pulsar, displays a host of emission phenomena over timescales of seconds to (at least) hours, including nulling, subpulse drifting, and mode-changing. Studying pulsars like PSR B0823+26 provides further insight into the relationship between these various emission phenomena and what they might teach us about pulsar magnetospheres. Here we report on the LOFAR discovery that PSR B0823+26 has a weak and sporadically emitting 'quiet' (Q) emission mode that is over 100 times weaker (on average) and has a nulling fraction forty-times greater than that of the more regularly-emitting 'bright' (B) mode. Previously, the pulsar has been undetected in the Q-mode, and was assumed to be nulling continuously. PSR B0823+26 shows a further decrease in average flux just before the transition into the B-mode, and perhaps truly turns off completely at these times. Furthermore, simultaneous observations taken with the LOFAR, Westerbork, Lovell, and Effelsberg telescopes between 110 MHz and 2.7 GHz demonstrate that the transition between the Q-mode and B-mode occurs within one single rotation of the neutron star, and that it is concurrent across the range of frequencies observed., Comment: 15 pages, 8 figures, 2 tables, accepted for publication in MNRAS
- Published
- 2015
- Full Text
- View/download PDF
34. The circular polarization in radio emission from extensive air showers
- Author
-
Tobias Winchen, Pim Schellart, J. P. Rachen, Jörg R. Hörandel, Arthur Corstanje, A. Nelles, Pragati Mitra, Antonio Bonardi, Heino Falcke, Gia Trinh, Olaf Scholten, Satyendra Thoudam, Brian Hare, S. ter Veen, Laura Rossetto, Stijn Buitink, Katie Mulrey, and Research unit Astroparticle Physics
- Subjects
Physics ,Frequency band ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,LOFAR ,Computational physics ,Askaryan effect ,Azimuth ,symbols.namesake ,Air shower ,Electric field ,symbols ,Stokes parameters ,Circular polarization - Abstract
At LOFAR we measure the radio emission from extensive air showers (EAS) in the frequency band of 30 -- 80~MHz in dual-polarized antennas. Through an accurate antenna calibration we can determine the complete set of four Stokes parameters that uniquely determine the linear and circular polarization of the radio signal for an EAS. The observed dependency of the circular polarization on azimuth angle and distance to the shower axis is explained as due to the interfering contributions from the two different radiation mechanisms, a main contribution due to a geomagnetically-induced transverse current and a secondary component due to the Askaryan effect. The measured data show a quantitative agreement with microscopic CORSIKA/CoREAS calculations. Having a very detailed understanding of radio emission from EAS, opens the possibility to use circular polarization as an investigative tool in the analysis of air shower structure, such as for the determination of atmospheric electric fields.
- Published
- 2017
- Full Text
- View/download PDF
35. The effect of the atmospheric refractive index on the radio signal of extensive air showers using Global Data Assimilation System (GDAS)
- Author
-
A. Nelles, J.R. Hörandel, Olaf Scholten, Brian Hare, Satyendra Thoudam, T. N. G. Trinh, Tobias Winchen, Jörg P. Rachen, Pragati Mitra, Antonio Bonardi, Stijn Buitink, Katie Mulrey, Pim Schellart, S. ter Veen, Laura Rossetto, Arthur Corstanje, Heino Falcke, and Research unit Astroparticle Physics
- Subjects
Radio telescope ,Atmosphere ,Data assimilation ,Air shower ,Frequency band ,Environmental science ,Cosmic ray ,LOFAR ,Atmospheric model ,Remote sensing - Abstract
In recent years, there has been a rapid advance in the field of radio detection of air showers induced by high-energy cosmic rays. Estimating the depth of shower maximum Xmax with improved accuracy is of great interest for the study of primary particle composition. One of the major systematic uncertainties in the Xmax-measurement arises from variations of the refractive index in the atmosphere. The refractive index varies with temperature, humidity and pressure, and the variations can be on the order of 10% for (n-1) at a given altitude. The effect of a varying refractive index on Xmax-measurements is evaluated using COREAS: a microscopic simulation of the radio emission from the individual particles in the cascade simulated with CORSIKA. We discuss the resulting offsets in Xmax for different frequency regimes, and compare them to a simple physical model. In typical circumstances, the offsets in Xmax range from 4 to 11 g/cm^2 for the 30 to 80 MHz frequency band. Therefore, for precision work it is required to include atmospheric data from the time and place of the air shower into the simulations. The aim is to implement this in the next version of CoREAS/CORSIKA using the Global Data Assimilation System(GDAS), a global atmospheric model based on meteorological measurements and numerical weather predictions. This can then be used to re-evaluate the air shower measurements done with the LOFAR radio telescope.
- Published
- 2017
36. Thunderstorm electric fields probed by extensive air showers through their polarized radio emission
- Author
-
Olaf Scholten, Anna Nelles, Brian Hare, Tobias Winchen, Pim Schellart, Satyendra Thoudam, Ute Ebert, Casper Rutjes, J. E. Enriquez, S. ter Veen, Laura Rossetto, Pragati Mitra, T. N. G. Trinh, Arthur Corstanje, Jörg P. Rachen, Jörg R. Hörandel, Stijn Buitink, Katie Mulrey, Heino Falcke, Antonio Bonardi, Physics, Astronomy and Astrophysics Research Group, Faculty of Sciences and Bioengineering Sciences, Research unit Astroparticle Physics, and Elementary Processes in Gas Discharges
- Subjects
Astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Atmospheric sciences ,01 natural sciences ,symbols.namesake ,Electric field ,0103 physical sciences ,Stokes parameters ,GeneralLiterature_REFERENCE(e.g.,dictionaries,encyclopedias,glossaries) ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,010303 astronomy & astrophysics ,Circular polarization ,Physics::Atmospheric and Oceanic Physics ,Physics ,010308 nuclear & particles physics ,LOFAR ,COSMIC-RAYS ,Computational physics ,Transverse plane ,13. Climate action ,symbols ,Thunderstorm ,RADIATION ,ARRAY ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
We observe a large fraction of circular polarization in radio emission from extensive air showers recorded during thunderstorms, much higher than in the emission from air showers measured during fair-weather circumstances. We show that the circular polarization of the air showers measured during thunderstorms can be explained by the change in the direction of the transverse current as a function of altitude induced by atmospheric electric fields. Thus by using the full set of Stokes parameters for these events, we obtain a good characterization of the electric fields in thunderclouds. We also measure a large horizontal component of the electric fields in the two events that we have analyzed.
- Published
- 2017
- Full Text
- View/download PDF
37. Precision study of radio emission from air showers at LOFAR
- Author
-
Heino Falcke, Pragati Mitra, Olaf Scholten, Antonio Bonardi, Katharine Mulrey, Ute Ebert, Jörg P. Rachen, Jörg R. Hörandel, Arthur Corstanje, Laura Rossetto, Pim Schellart, Tobias Winchen, Sander ter Veen, Anna Nelles, Gia Trinh, Casper Rutjes, Stijn Buitink, Satyendra Thoudam, Research unit Astroparticle Physics, CWI, Amsterdam, The Netherlands, and Centrum Wiskunde & Informatica, Amsterdam (CWI), The Netherlands
- Subjects
Astroparticle physics ,Physics ,010308 nuclear & particles physics ,Astronomy ,QC1-999 ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,Cosmic ray ,LOFAR ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Polarization (waves) ,01 natural sciences ,Air shower ,13. Climate action ,0103 physical sciences ,Thunderstorm ,010306 general physics ,GeneralLiterature_REFERENCE(e.g.,dictionaries,encyclopedias,glossaries) ,Circular polarization ,Physics::Atmospheric and Oceanic Physics ,Radio wave - Abstract
textabstractRadio detection as well as modeling of cosmic rays has made enormous progress in the past years. We show this by using the subtle circular polarization of the radio pulse from air showers measured in fair weather conditions and the intensity of radio emission from an air shower under thunderstorm conditions.
- Published
- 2017
38. A study of radio frequency spectrum emitted by high energy air showers with LOFAR
- Author
-
Tobias Winchen, Antonio Bonardi, Sander ter Veen, Heino Falcke, Stijn Buitink, Katie Mulrey, Anna Nelles, Olaf Scholten, Pim Schellart, Arthur Corstanje, Laura Rossetto, Jörg P. Rachen, Jörg R. Hörandel, Gia Trinh, J. Emilio Enriquez, Satyendra Thoudam, Pragati Mitra, Physics, Astronomy and Astrophysics Research Group, Faculty of Sciences and Bioengineering Sciences, and Research unit Astroparticle Physics
- Subjects
Physics ,010308 nuclear & particles physics ,QC1-999 ,Astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,Detector ,Monte Carlo method ,Astrophysics::Instrumentation and Methods for Astrophysics ,Cosmic ray ,Astrophysics ,LOFAR ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Low frequency ,Physics and Astronomy(all) ,01 natural sciences ,Radio spectrum ,Computational physics ,Radio telescope ,0103 physical sciences ,Ultra-high-energy cosmic ray ,010303 astronomy & astrophysics ,GeneralLiterature_REFERENCE(e.g.,dictionaries,encyclopedias,glossaries) - Abstract
The LOw Frequency ARray (LOFAR) is a multipurpose radio antenna array aimed to detect radio signals in the frequency range 10 - 240 MHz, covering a large surface in Northern Europe with a higher density in the Northern Netherlands. The detection of the radio signal emitted by extensive air showers allows to reconstruct the geometry of the observed cascade. Thus, several properties of primary particles (e.g. arrival direction, mass composition) can be inferred. We describe a study of several geometrical parameters of the radio signal emitted by extensive air showers propagating in the atmosphere, and their correlation with the observed radio frequency spectrum. In order to find the best parameters that describe the correlation between primary cosmic ray information and the emitted radio signal, a preliminary study on simulated events has been done. Monte Carlo simulations of radio signals have been produced by using the CoREAS code, a plug-in of the CORSIKA particle simulation code. The final aim of this study is to find a method to infer information of primary cosmic rays in an independent way from the well-established fluorescence and surface detector techniques, in view of affirming the radio detection technique as reliable method for the study of high energy cosmic rays.
- Published
- 2017
39. The effect of the atmospheric refractive index on the radio signal of extensive air showers
- Author
-
Stijn Buitink, Katie Mulrey, A. Nelles, Tobias Winchen, S. ter Veen, Jörg P. Rachen, Jörg R. Hörandel, Laura Rossetto, Pragati Mitra, Pim Schellart, Antonio Bonardi, Heino Falcke, Arthur Corstanje, Satyendra Thoudam, Gia Trinh, Olaf Scholten, Research unit Astroparticle Physics, Physics, Astronomy and Astrophysics Research Group, Faculty of Sciences and Bioengineering Sciences, and Elementary Particle Physics
- Subjects
Astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Cosmic ray ,Atmospheric sciences ,01 natural sciences ,0103 physical sciences ,Extensive air showers ,Radio emission ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,010303 astronomy & astrophysics ,Cosmic rays ,Zenith ,Cherenkov radiation ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Astroparticle physics ,Physics ,astro-ph.HE ,Atmospheric pressure ,010308 nuclear & particles physics ,Astrophysics::Instrumentation and Methods for Astrophysics ,Humidity ,Astronomy and Astrophysics ,Atmospheric effects ,ComputingMethodologies_DOCUMENTANDTEXTPROCESSING ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Instrumentation and Methods for Astrophysics ,Refractive index ,Radio wave ,astro-ph.IM - Abstract
For the interpretation of measurements of radio emission from extensive air showers, an important systematic uncertainty arises from natural variations of the atmospheric refractive index $n$. At a given altitude, the refractivity $N=10^6\, (n-1)$ can have relative variations on the order of $10 \%$ depending on temperature, humidity, and air pressure. Typical corrections to be applied to $N$ are about $4\%$. Using CoREAS simulations of radio emission from air showers, we have evaluated the effect of varying $N$ on measurements of the depth of shower maximum $X_{\rm max}$. For an observation band of 30 to 80 MHz, a difference of $4 \%$ in refractivity gives rise to a systematic error in the inferred $X_{\rm max}$ between 3.5 and 11 $\mathrm{g/cm^2}$, for proton showers with zenith angles ranging from 15 to 50 degrees. At higher frequencies, from 120 to 250 MHz, the offset ranges from 10 to 22 $\mathrm{g/cm^2}$. These offsets were found to be proportional to the geometric distance to $X_{\rm max}$. We have compared the results to a simple model based on the Cherenkov angle. For the 120 to 250 MHz band, the model is in qualitative agreement with the simulations. In typical circumstances, we find a slight decrease in $X_{\rm max}$ compared to the default refractivity treatment in CoREAS. While this is within commonly treated systematic uncertainties, accounting for it explicitly improves the accuracy of $X_{\rm max}$ measurements., 13 pages, 5 figures. Accepted for publication in Astroparticle Physics
- Published
- 2017
40. Search for Cosmic Particles with the Moon and LOFAR
- Author
-
T. N. G. Trinh, Olaf Scholten, S. ter Veen, Jörg P. Rachen, Jörg R. Hörandel, Laura Rossetto, Arthur Corstanje, Anna Nelles, Satyendra Thoudam, Pragati Mitra, Tobias Winchen, J. E. Enriquez, Katharine Mulrey, A. Bonardi, Heino Falcke, Pim Schellart, Stijn Buitink, Research unit Astroparticle Physics, Physics, Astronomy and Astrophysics Research Group, and Faculty of Sciences and Bioengineering Sciences
- Subjects
Physics ,COSMIC cancer database ,010308 nuclear & particles physics ,QC1-999 ,Astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,Dark matter ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Cosmic ray ,Astrophysics::Cosmology and Extragalactic Astrophysics ,LOFAR ,Physics and Astronomy(all) ,01 natural sciences ,Radio telescope ,0103 physical sciences ,Particle ,Neutrino ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,010303 astronomy & astrophysics ,GeneralLiterature_REFERENCE(e.g.,dictionaries,encyclopedias,glossaries) - Abstract
The low flux of the ultra-high energy cosmic rays (UHECR) at the highest energies provides a challenge to answer the long standing question about their origin and nature. A significant increase in the number of detected UHECR is expected to be achieved by employing Earth's moon as detector, and search for short radio pulses that are emitted when a particle interacts in the lunar rock. Observation of these short pulses with current and future radio telescopes also allows to search for the even lower fluxes of neutrinos with energies above $10^{22}$ eV, that are predicted in certain Grand-Unifying-Theories (GUTs), and e.g. models for super-heavy dark matter (SHDM). In this contribution we present the initial design for such a search with the LOFAR radio telescope., Comment: To be published in the Proceedings of the ARENA2016 conference, Groningen, The Netherlands
- Published
- 2017
41. Realtime processing of LOFAR data for the detection of nano-second pulses from the Moon
- Author
-
Satyendra Thoudam, Tobias Winchen, Pim Schellart, Olaf Scholten, A. Nelles, T. N. G. Trinh, J.R. Hörandel, Stijn Buitink, Katie Mulrey, Antonio Bonardi, Arthur Corstanje, J. E. Enriquez, Heino Falcke, Pragati Mitra, Jörg P. Rachen, S. ter Veen, Laura Rossetto, and Research unit Astroparticle Physics
- Subjects
Physics ,History ,Astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,Pipeline (computing) ,Detector ,Dark matter ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Cosmic ray ,010103 numerical & computational mathematics ,LOFAR ,01 natural sciences ,Signal ,Computer Science Applications ,Education ,Computational physics ,Radio telescope ,0103 physical sciences ,0101 mathematics ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,010303 astronomy & astrophysics ,GeneralLiterature_REFERENCE(e.g.,dictionaries,encyclopedias,glossaries) ,Energy (signal processing) - Abstract
The low flux of the ultra-high energy cosmic rays (UHECR) at the highest energies provides a challenge to answer the long standing question about their origin and nature. Even lower fluxes of neutrinos with energies above $10^{22}$ eV are predicted in certain Grand-Unifying-Theories (GUTs) and e.g.\ models for super-heavy dark matter (SHDM). The significant increase in detector volume required to detect these particles can be achieved by searching for the nano-second radio pulses that are emitted when a particle interacts in Earth's moon with current and future radio telescopes. In this contribution we present the design of an online analysis and trigger pipeline for the detection of nano-second pulses with the LOFAR radio telescope. The most important steps of the processing pipeline are digital focusing of the antennas towards the Moon, correction of the signal for ionospheric dispersion, and synthesis of the time-domain signal from the polyphased-filtered signal in frequency domain. The implementation of the pipeline on a GPU/CPU cluster will be discussed together with the computing performance of the prototype., Proceedings of the 22nd International Conference on Computing in High Energy and Nuclear Physics (CHEP2016), USA
- Published
- 2017
42. LORA: A scintillator array for LOFAR to measure extensive air showers
- Author
-
Maria Krause, Jörg R. Hörandel, A. Horneffer, J. E. Enriquez, Wilfred Frieswijk, A. Nelles, M. van den Akker, Heino Falcke, S. ter Veen, Arthur Corstanje, Pim Schellart, Stijn Buitink, Satyendra Thoudam, Olaf Scholten, Research unit Astroparticle Physics, and KVI - Center for Advanced Radiation Technology
- Subjects
Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,Astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Cosmic ray ,Astrophysics::Cosmology and Extragalactic Astrophysics ,LORA ,High Energy Physics - Experiment ,Radio telescope ,High Energy Physics - Experiment (hep-ex) ,KASCADE ,Extensive air showers ,Radio detection ,Cosmic rays ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Instrumentation ,Physics::Atmospheric and Oceanic Physics ,Astroparticle physics ,Physics ,Scintillation ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,LOFAR ,Instrumentation and Detectors (physics.ins-det) ,COSMIC-RAYS ,RADIO TELESCOPE ,Air shower ,ComputingMethodologies_DOCUMENTANDTEXTPROCESSING ,Scintillation detectors ,Astrophysics - Instrumentation and Methods for Astrophysics ,EMISSION - Abstract
The measurement of the radio emission from extensive air showers, induced by high-energy cosmic rays is one of the key science projects of the LOFAR radio telescope. The LOfar Radboud air shower Array (LORA) has been installed in the core of LOFAR in the Netherlands. The main purpose of LORA is to measure the properties of air showers and to trigger the read-out of the LOFAR radio antennas to register extensive air showers. The experimental set-up of the array of scintillation detectors and its performance are described., Comment: 10 pages, Accepted for publication in Nuclear Instruments and Methods A
- Published
- 2014
- Full Text
- View/download PDF
43. Towards real-time cosmic-ray identification with the LOw Frequency ARay
- Author
-
Anna Nelles, Antonio Bonardi, Brian Hare, Stijn Buitink, Katie Mulrey, Sander ter Veen, Jörg P. Rachen, Jörg R. Hörandel, Pragati Mitra, Satyendra Thoudam, Heino Falcke, Pim Schellart, Gia Trinh, Olaf Scholten, Laura Rossetto, Tobias Winchen, Arthur Corstanje, Astronomy and Astrophysics Research Group, Physics, and Faculty of Sciences and Bioengineering Sciences
- Subjects
Physics ,010308 nuclear & particles physics ,business.industry ,QC1-999 ,Astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,Cosmic ray ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Limiting ,LOFAR ,Low frequency ,01 natural sciences ,Particle detector ,Identification (information) ,Optics ,0103 physical sciences ,Recognition system ,Antenna (radio) ,010306 general physics ,business - Abstract
The radio signals emitted by Extensive Air Showers have been successfully used for the last decade by LOFAR to reconstruct the properties of the primary cosmic rays. Since an effective real-time recognition system for the very short radio pulses is lacking, cosmic-ray acquisition is currently triggered by an external array of particle detector, called LORA, limiting the LOFAR collecting area to the area covered by LORA. A new algorithm for the real-time cosmic-ray detection has been developed for the LOFAR Low Band Antenna, which are sensitive between 10 and 90 MHz, and is here presented together with the latest results.
- Published
- 2019
- Full Text
- View/download PDF
44. A new parametrization for the radio emission of air showers applied to LOFAR data
- Author
-
Brian Hare, Arthur Corstanje, Antonio Bonardi, Pim Schellart, Pragati Mitra, Tobias Winchen, Jörg R. Hörandel, Heino Falcke, J. P. Rachen, T. N. G. Trinh, I. Plaisier, Satyendra Thoudam, S. ter Veen, Laura Rossetto, Anna Nelles, Stijn Buitink, Katie Mulrey, Olaf Scholten, S. J. De Jong, Astronomy and Astrophysics Research Group, Physics, and Faculty of Sciences and Bioengineering Sciences
- Subjects
Physics ,QC1-999 ,Astronomy ,Computer Science::Information Retrieval ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,Cosmic ray ,Astrophysics::Cosmology and Extragalactic Astrophysics ,LOFAR ,Mass composition ,Computational physics ,Earth's magnetic field ,Primary (astronomy) ,Energy density ,High Energy Physics ,Parametrization ,Energy (signal processing) - Abstract
The energy and mass composition of cosmic rays influence how the energy density of the radio emission of air showers is distributed on the ground. A precise description of the radio profiles can, therefore, be used to reconstruct the properties of the primary cosmic rays. Here, such a description is presented, using a separate treatment of the two radio-emission mechanisms, the geomagnetic effect and the charge excess effect. The model is parametrized as a function that depends only on the shower parameters, allowing for a precise reconstruction of the properties of the primary cosmic rays. This model is applied to cosmic-ray events measured with LOFAR and it is capable of reconstructing the properties of air showers correctly.
- Published
- 2019
- Full Text
- View/download PDF
45. Searching for neutrino radio flashes from the Moon with LOFAR
- Author
-
Stijn Buitink, Arthur Corstanje, Emilio Enriquez, Heino Falcke, Wilfred Frieswijk, Jörg Hörandel, Maaijke Mevius, Anna Nelles, Satyendra Thoudam, Pim Schellart, Olaf Scholten, Sander ter Veen, Martin van den Akker, null LOFAR Collaboration, and KVI - Center for Advanced Radiation Technology
- Subjects
010504 meteorology & atmospheric sciences ,Astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,Flux ,FOS: Physical sciences ,Cosmic ray ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,7. Clean energy ,Askaryan effect ,Radio telescope ,0103 physical sciences ,010303 astronomy & astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,0105 earth and related environmental sciences ,Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,COSMIC cancer database ,Astrophysics::Instrumentation and Methods for Astrophysics ,LOFAR ,Digital radio ,ComputingMethodologies_DOCUMENTANDTEXTPROCESSING ,Neutrino ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
Ultra-high-energy neutrinos and cosmic rays produce short radio flashes through the Askaryan effect when they impact on the Moon. Earthbound radio telescopes can search the Lunar surface for these signals. A new generation of low- frequency, digital radio arrays, spearheaded by LOFAR, will allow for searches with unprecedented sensitivity. In the first stage of the NuMoon project, low-frequency observations were carried out with the Westerbork Synthesis Radio Telescope, leading to the most stringent limit on the cosmic neutrino flux above 10$^{23}$ eV. With LOFAR we will be able to reach a sensitivity of over an order of magnitude better and to decrease the threshold energy., Comment: Proceedings of the ARENA 2012 workshop (Erlangen, Germany), AIP Conference Proceedings, to be published
- Published
- 2013
- Full Text
- View/download PDF
46. Xmax reconstruction based on radio detection of air showers
- Author
-
Arthur Corstanje, T. Huege, Olaf Scholten, Satyendra Thoudam, A. Nelles, Jörg P. Rachen, Pim Schellart, Jörg R. Hörandel, S. ter Veen, T. N. G. Trinh, Heino Falcke, Laura Rossetto, Stijn Buitink, J. E. Enriquez, and Research unit Astroparticle Physics
- Subjects
Physics ,Optics ,Distribution function ,business.industry ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,LOFAR ,Radiation ,business ,Radio detection - Abstract
The radio emission from air showers is used to accurately reconstruct the depth of the shower maximum (Xmax). We present a method based on using the full two-dimensional radiation profile as observed on the ground. While the density of shower particles reaching the ground is usually described with a 1D lateral distribution function, the intensity of the radio pulse is a complex function of observer position with respect to the shower axis. The CoREAS code simulates these complicated patterns to very high precision. When the antenna density is sufficiently high, like for example in the LOFAR core, the 2D approach leads to a resolution on Xmax of < 20 g/cm2. This is the same level of accuracy that is achieved with fluorescence detection.
- Published
- 2016
- Full Text
- View/download PDF
47. Polarization and radio wavefront of air showers as measured with LOFAR
- Author
-
Heino Falcke, Olaf Scholten, Satyendra Thoudam, Pim Schellart, S. ter Veen, J. P. Rachen, Gia Trinh, Emilio Enriquez, Arthur Corstanje, A. Nelles, J. R. Hoerandel, Stijn Buitink, Laura Rossetto, and Research unit Astroparticle Physics
- Subjects
Wavefront ,Physics ,Optics ,business.industry ,LOFAR ,business ,Polarization (waves) - Published
- 2016
- Full Text
- View/download PDF
48. The cosmic-ray energy spectrum above $\sim 10^{16}$ eV measured with the LOFAR Radboud Air Shower Array
- Author
-
A. Nelles, Olaf Scholten, Emilio Enriquez, Jörg R. Hörandel, Satyendra Thoudam, Arthur Corstanje, L. V. Kessel, Heino Falcke, Gia Trinh, S. ter Veen, Laura Rossetto, Stijn Buitink, Pim Schellart, and J. P. Rachen
- Subjects
Physics ,Scintillation ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Cosmic ray ,Astrophysics::Cosmology and Extragalactic Astrophysics ,LOFAR ,Astrophysics ,Atmosphere ,Radio telescope ,Shower ,Air shower ,Physics::Atmospheric and Oceanic Physics - Abstract
The LOFAR Radboud Air Shower Array (LORA) is an array of 20 plastic scintillation detectors installed in the center of the LOFAR radio telescope in the Netherlands to measure extensive air showers induced by cosmic rays in the Earth's atmosphere. The primary goals of LORA are to trigger the read-out of the LOFAR radio antennas to record radio signals from air showers, and to assist the reconstruction of air shower properties with LOFAR by providing basic air shower parameters, such as the position of the shower axis on the ground, the arrival direction and the energy of the incoming cosmic ray. In this paper, we describe the various steps involved in the energy reconstruction of air showers measured with LORA, and present the all-particle cosmicray energy spectrum above 1016 eV reconstructed for the two extreme scenarios: pure protons and iron nuclei.
- Published
- 2016
- Full Text
- View/download PDF
49. Probing atmospheric electric fields in thunderstorms through radio emission from extensive air showers
- Author
-
Olaf Scholten, A. Nelles, J. E. Enriquez, Stijn Buitink, Arthur Corstanje, Heino Falcke, A.M. van den Berg, Jörg P. Rachen, Jörg R. Hörandel, T. N. G. Trinh, Pim Schellart, Ute Ebert, S. ter Veen, Laura Rossetto, Satyendra Thoudam, and Casper Rutjes
- Subjects
Physics ,Air shower ,Meteorology ,Astrophysics::High Energy Astrophysical Phenomena ,Electric field ,Thunderstorm ,Polarization (waves) ,Physics::Atmospheric and Oceanic Physics - Abstract
We present measurements of radio emission from extensive air showers taking place during thunderstorms. Their intensity and polarization patterns are different from those observed during fair-weather conditions. We introduce a simple two-layer model for atmospheric electric fields which can reproduce the main features of the intensity and polarization patterns of air shower during thunderstorms. This in turn provides a unique way to probe atmospheric electric fields.
- Published
- 2016
- Full Text
- View/download PDF
50. A study of radio frequency spectrum emitted by high energy air showers with LOFAR
- Author
-
Satyendra Thoudam, Heino Falcke, Olaf Scholten, Jörg P. Rachen, S. ter Veen, Pim Schellart, Jörg R. Hörandel, Stijn Buitink, Laura Rossetto, J. E. Enriquez, T. N. G. Trinh, A. Nelles, and Arthur Corstanje
- Subjects
Physics ,High energy ,Astronomy ,LOFAR ,Radio spectrum - Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.