1. Sonocrystallization of a novel ZIF/zeolite composite adsorbent with high chemical stability for removal of the pharmaceutical pollutant azithromycin from contaminated water
- Author
-
Zhiming Liu, Ashkan Bahadoran, As'ad Alizadeh, Nafiseh Emami, Tariq J. Al-Musaw, Ahmed Hussien Radie Alawadi, Aseel M. Aljeboree, Mahmoud Shamsborhan, Iman Najafipour, Seyed Erfan Mousavi, Milad Mosallanezhad, and Davood Toghraie
- Subjects
Azithromycin ,Pharmaceutical Contaminant ,Adsorption ,ZIF-8/Zeolite composite ,Langmuir isotherm ,Chemistry ,QD1-999 ,Acoustics. Sound ,QC221-246 - Abstract
Water pollution management, reduction, and elimination are critical challenges of the current era that threaten millions of lives. By spreading the coronavirus in December 2019, the use of antibiotics, such as azithromycin increased. This drug was not metabolized, and entered the surface waters. ZIF-8/Zeolit composite was made by the sonochemical method. Furthermore, the effect of pH, the regeneration of adsorbents, kinetics, isotherms, and thermodynamics were attended. The adsorption capacity of zeolite, ZIF-8, and the composite ZIF-8/Zeolite were 22.37, 235.3, and 131 mg/g, respectively. The adsorbent reaches the equilibrium in 60 min, and at pH = 8. The adsorption process was spontaneous, endothermic associated with increased entropy. The results of the experiment were analyzed using Langmuir isotherms and pseudo-second order kinetic models with a R2 of 0.99, and successfully removing the composite by 85% in 10 cycles. It indicated that the maximum amount of drug could be removed with a small amount of composite.
- Published
- 2023
- Full Text
- View/download PDF