1. Calmodulin complexes with brain and muscle creatine kinase peptides
- Author
-
Janina Sprenger, Anda Trifan, Neal Patel, Ashley Vanderbeck, Jenny Bredfelt, Emad Tajkhorshid, Roger Rowlett, Leila Lo Leggio, Karin S. Åkerfeldt, and Sara Linse
- Subjects
Cellular energy metabolism ,Calcium signaling ,Enzyme regulation ,Calmodulin X-ray structure ,Isothermal titration calorimetry ,Biology (General) ,QH301-705.5 - Abstract
Calmodulin (CaM) is a ubiquitous Ca2+ sensing protein that binds to and modulates numerous target proteins and enzymes during cellular signaling processes. A large number of CaM-target complexes have been identified and structurally characterized, revealing a wide diversity of CaM-binding modes. A newly identified target is creatine kinase (CK), a central enzyme in cellular energy homeostasis. This study reports two high-resolution X-ray structures, determined to 1.24 Å and 1.43 Å resolution, of calmodulin in complex with peptides from human brain and muscle CK, respectively. Both complexes adopt a rare extended binding mode with an observed stoichiometry of 1:2 CaM:peptide, confirmed by isothermal titration calorimetry, suggesting that each CaM domain independently binds one CK peptide in a Ca2+-depended manner. While the overall binding mode is similar between the structures with muscle or brain-type CK peptides, the most significant difference is the opposite binding orientation of the peptides in the N-terminal domain. This may extrapolate into distinct binding modes and regulation of the full-length CK isoforms. The structural insights gained in this study strengthen the link between cellular energy homeostasis and Ca2+-mediated cell signaling and may shed light on ways by which cells can ‘fine tune’ their energy levels to match the spatial and temporal demands.
- Published
- 2021
- Full Text
- View/download PDF