1. Combining Machine Learning Defenses without Conflicts
- Author
-
Duddu, Vasisht, Zhang, Rui, and Asokan, N.
- Subjects
Computer Science - Cryptography and Security ,Computer Science - Machine Learning - Abstract
Machine learning (ML) defenses protect against various risks to security, privacy, and fairness. Real-life models need simultaneous protection against multiple different risks which necessitates combining multiple defenses. But combining defenses with conflicting interactions in an ML model can be ineffective, incurring a significant drop in the effectiveness of one or more defenses being combined. Practitioners need a way to determine if a given combination can be effective. Experimentally identifying effective combinations can be time-consuming and expensive, particularly when multiple defenses need to be combined. We need an inexpensive, easy-to-use combination technique to identify effective combinations. Ideally, a combination technique should be (a) accurate (correctly identifies whether a combination is effective or not), (b) scalable (allows combining multiple defenses), (c) non-invasive (requires no change to the defenses being combined), and (d) general (is applicable to different types of defenses). Prior works have identified several ad-hoc techniques but none satisfy all the requirements above. We propose a principled combination technique, Def\Con, to identify effective defense combinations. Def\Con meets all requirements, achieving 90% accuracy on eight combinations explored in prior work and 81% in 30 previously unexplored combinations that we empirically evaluate in this paper.
- Published
- 2024