6 results on '"Association des Cytogénéticiens de Langue Française"'
Search Results
2. Intérêt de l’analyse chromosomique sur puce à ADN en cas de blocage de maturation méiotique testiculaire
- Author
-
Ghieh, Farah, Mitchell, Valérie, Bailly, Marc, Izard, Vincent, Mandon-Pepin, Beatrice, Vialard, François, Gamètes, implantation, gestation (GIG), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Centre Hospitalier iItercommunal de Poissy/Saint-Germain-en-Laye - CHIPS [Poissy], Partenaires INRAE, Département de Biologie de la Reproduction, CHI Poissy-Saint-Germain, Service d'Urologie, Hôpital Foch [Suresnes], Biologie du Développement et Reproduction (BDR), École nationale vétérinaire d'Alfort (ENVA)-Institut National de la Recherche Agronomique (INRA), Fédération de Génétique, Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), and Association des Cytogénéticiens de Langue Française & Association des Technicien(ne)s en Cytogénétique.
- Subjects
analyse chromosomique ,[SDV]Life Sciences [q-bio] ,puce à adn ,[INFO]Computer Science [cs] ,infertilité - Abstract
National audience; Introduction : L'azoospermie, définie par l'absence de spermatozoïdes dans l’éjaculat, affecte environ 1% des hommes. On définit 2 types d’azoospermie : l’obstructive, par blocage des voies éjaculatrices, et la non-obstructive (NOA), par défaut de la spermatogenèse. Les causes génétiques connues à l’origine des NOA sont le syndrome de Klinefelter, les microdélétions du chromosome Y, et les remaniements chromosomiques (20% des NOA). Différents phénotypes de NOA existent dont l’arrêt de maturation testiculaire dans environ 5% des cas où des délétions du gène TEX11 ont été décrites comme récurrentes. L’objectif de ce travail est de savoir si d’autres CNVs pourraient à l’origine d’arrêt de maturation. Matériel et méthode : Une cohorte de 20 patients, avec caryotype normal et sans microdélétion du chromosome Y, ont été inclus dans cette étude. Une puce Agilent Genetisure 400k CGH+SNP a été utilisée. Résultats : Au total, 989 CNVs ont été identifiés (49 ± 12 par patient). Après élimination des CNVs dus aux variations de l’ADN de référence et les CNVs récurrents, 236 CNVs ont alors été retenus, dont 56 nullosomies et 180 CNVs hétérozygotes. Parmi les nullosomies, deux gènes surexprimés dans les testicules ont été identifiés, dont un pour lequel l’invalidation chez la souris induit un arrêt de maturation. Aucune délétion du gène TEX11 n’a été identifiée. Discussion-Conclusion : Les résultats obtenus dans cette étude, en cours de validation, suggèrent un rôle des CNVs dans le phénotype d’arrêt de maturation chez les patients NOA. Les délétions homozygotes ou nullosomies pourraient entrainer la perte de l’expression de gènes candidats responsables de l’arrêt méiotique chez certains patients et les délétions hétérozygotes, pourraient être des facteurs de prédisposition à l’apparition d’un blocage méiotique. A noter la présence dans notre cohorte de 6 patients sur 20 consanguins.
- Published
- 2018
3. A French multicenter study of over 700 patients with 22q11 deletions diagnosed using FISH or aCGH
- Author
-
François Vialard, Eva Pipiras, Pascale Kleinfinger, Dominique Martin-Coignard, Marie Catty, Elisabeth Flori, Emilie Landais, Mylène Valduga, Marie-France Portnoï, Aline Receveur, Agnès Choiset, Ghislaine Plessis, Nathalie Le Meur, Audrey Basinko, Justine Besseau-Ayasse, James Lespinasse, Radu Harbuz, Céline Poirsier, Martine Doco-Fenzy, Pascaline Letard, Caroline Schluth-Bolard, Anne Bazin, Jérôme Toutain, Fabienne Prieur, Florence Amblard, Cédric Le Caignec, Tiffany Busa, Marie Christine de Blois, Melanie Jimenez, Patrick Callier, Chantal Missirian, Céline Pebrel-Richard, Paul Kuentz, Catherine Yardin, François Cartault, Hakima Lallaoui, Service de génétique [Reims], Centre Hospitalier Universitaire de Reims (CHU Reims), UVSQ - Département de maïeutique (UVSQ Maïeutique), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Centre de recherche en neurosciences de Lyon (CRNL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), CHU Bordeaux [Bordeaux], Département de génétique médicale [Hôpital de la Timone - APHM], Aix Marseille Université (AMU)-Assistance Publique - Hôpitaux de Marseille (APHM)- Hôpital de la Timone [CHU - APHM] (TIMONE)-Institut National de la Santé et de la Recherche Médicale (INSERM), Génétique Médicale et Génomique Fonctionnelle (GMGF), Aix Marseille Université (AMU)-Assistance Publique - Hôpitaux de Marseille (APHM)- Hôpital de la Timone [CHU - APHM] (TIMONE)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Centre hospitalier universitaire de Nantes (CHU Nantes), Centre Hospitalier Universitaire de Dijon - Hôpital François Mitterrand (CHU Dijon), Service de Génétique [CHU Caen], CHU Caen, Normandie Université (NU)-Tumorothèque de Caen Basse-Normandie (TCBN)-Normandie Université (NU)-Tumorothèque de Caen Basse-Normandie (TCBN)-Université de Caen Normandie (UNICAEN), Normandie Université (NU), Génétique moléculaire et génétique épidémiologique, Université de Brest (UBO)-Institut National de la Santé et de la Recherche Médicale (INSERM), Neuroprotection du Cerveau en Développement / Promoting Research Oriented Towards Early Cns Therapies (PROTECT), Assistance publique - Hôpitaux de Paris (AP-HP) (APHP)-Hôpital Robert Debré-Université Paris Diderot - Paris 7 (UPD7)-Institut National de la Santé et de la Recherche Médicale (INSERM), Service de cytogénétique, CHU Strasbourg-Hôpital de Hautepierre [Strasbourg], Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de la Recherche Agronomique (INRA), Laboratoire de cytogénétique et génétique moléculaire [CHRU Nancy], Centre Hospitalier Régional Universitaire de Nancy (CHRU Nancy), Service de Génétique, Centre Hospitalier Universitaire de Reims (CHU Reims)-Hôpital Maison Blanche-IFR 53, Université de Reims Champagne-Ardenne (URCA)-Université de Reims Champagne-Ardenne (URCA), Service de génétique, Centre hospitalier Félix Guyon, Bellepierre, Département de Génétique Chromosomique, Bâtiment Hôtel Dieu - Centre Hospitalier de Chambéry, Laboratoire de génétique médicale et cytogénétique [Le Mans], Centre Hospitalier Le Mans (CH Le Mans), Centre de génétique - Centre de référence des maladies rares, anomalies du développement et syndromes malformatifs (CHU de Dijon), CHU Clermont-Ferrand, Service de Génétique et d'Embryologie Médicales [CHU Trousseau], Assistance publique - Hôpitaux de Paris (AP-HP) (APHP)-CHU Trousseau [APHP], Service d'histologie, embryologie et cytogénétique [Béclère], Université Paris-Sud - Paris 11 (UP11)-Assistance publique - Hôpitaux de Paris (AP-HP) (APHP)-Hôpital Antoine Béclère, Département de génétique et procréation, Université Joseph Fourier - Grenoble 1 (UJF)-Hôpital Couple-Enfant, Service d'Histologie, cytologie, cytogénétique, biologie cellulaire [CHU Limoges], CHU Limoges, Activité Motrice et Adaptation PsychoPhysiologique (AMAPP), Université d'Orléans (UO), Service de génétique [Rouen], CHU Rouen, Normandie Université (NU)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Service Histologie-embryologie-cytogénétique, Université Paris 13 (UP13)-Assistance publique - Hôpitaux de Paris (AP-HP) (APHP)-Hôpital Jean Verdier [Bondy], Assistance publique - Hôpitaux de Paris (AP-HP) (APHP), Laboratoire Pasteur Cerba, Laboratoire de Cytogénétique, CHI Poissy-Saint-Germain, Service de gynécologie et obstétrique [CHI Poissy-Saint Germain], Université de Versailles Saint-Quentin-en-Yvelines - UFR Sciences de la santé Simone Veil (UVSQ Santé), Centre de recherche en neurosciences de Lyon - Lyon Neuroscience Research Center (CRNL), Université de Lyon-Université de Lyon-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Institut Pasteur [Paris] (IP)-Laboratoire CERBA [Saint Ouen l'Aumône], Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-CHU Caen, Normandie Université (NU)-Tumorothèque de Caen Basse-Normandie (TCBN)-Tumorothèque de Caen Basse-Normandie (TCBN), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpital Robert Debré-Université Paris Diderot - Paris 7 (UPD7)-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de la Recherche Agronomique (INRA)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), CHU Trousseau [APHP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU), Université Paris-Sud - Paris 11 (UP11)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-AP-HP - Hôpital Antoine Béclère [Clamart], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Université Paris 13 (UP13)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpital Jean Verdier [AP-HP], Association des Cytogénéticiens de Langue Française, Gamètes, implantation, gestation (GIG), Institut National de la Santé et de la Recherche Médicale (INSERM)- Hôpital de la Timone [CHU - APHM] (TIMONE)-Assistance Publique - Hôpitaux de Marseille (APHM)-Aix Marseille Université (AMU), Institut Pasteur [Paris]-Laboratoire CERBA [Saint Ouen l'Aumône], Service de génétique et embryologie médicales [CHU Trousseau], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Université Paris 13 (UP13)-Hôpital Jean Verdier [AP-HP], and Assistance publique - Hôpitaux de Paris (AP-HP) (APHP)-Université Paris 13 (UP13)-Hôpital Jean Verdier [Bondy]
- Subjects
Adult ,Male ,0301 basic medicine ,Pediatrics ,medicine.medical_specialty ,22q11 Deletion Syndrome ,Adolescent ,[SDV]Life Sciences [q-bio] ,Population ,Article ,03 medical and health sciences ,Intellectual disability ,Genetics ,medicine ,Humans ,Genetic Testing ,Child ,education ,ComputingMilieux_MISCELLANEOUS ,In Situ Hybridization, Fluorescence ,Genetics (clinical) ,Comparative Genomic Hybridization ,Fetus ,education.field_of_study ,business.industry ,Incidence (epidemiology) ,Infant, Newborn ,Cytogenetics ,Infant ,Microdeletion syndrome ,medicine.disease ,3. Good health ,030104 developmental biology ,Child, Preschool ,Cohort ,Paternal Inheritance ,Female ,France ,business ,Comparative genomic hybridization - Abstract
Although 22q11.2 deletion syndrome (22q11.2DS) is the most recurrent human microdeletion syndrome associated with a highly variable phenotype, little is known about the condition's true incidence and the phenotype at diagnosis. We performed a multicenter, retrospective analysis of postnatally diagnosed patients recruited by members of the Association des Cytogénéticiens de Langue Française (the French-Speaking Cytogeneticists Association). Clinical and cytogenetic data on 749 cases diagnosed between 1995 and 2013 were collected by 31 French cytogenetics laboratories. The most frequent reasons for referral of postnatally diagnosed cases were a congenital heart defect (CHD, 48.6%), facial dysmorphism (49.7%) and developmental delay (40.7%). Since 2007 (the year in which array comparative genomic hybridization (aCGH) was introduced for the routine screening of patients with intellectual disability), almost all cases have been diagnosed using FISH (96.1%). Only 15 cases (all with an atypical phenotype) were diagnosed with aCGH; the deletion size ranged from 745 to 2904 kb. The deletion was inherited in 15.0% of cases and was of maternal origin in 85.5% of the latter. This is the largest yet documented cohort of patients with 22q11.2DS (the most commonly diagnosed microdeletion) from the same population. French cytogenetics laboratories diagnosed at least 108 affected patients (including fetuses) per year from among a national population of ∼66 million. As observed for prenatal diagnoses, CHDs were the most frequently detected malformation in postnatal diagnoses. The most common CHD in postnatal diagnoses was an isolated septal defect.
- Published
- 2015
- Full Text
- View/download PDF
4. Clinical and genomic delineation of the new proximal 19p13.3 microduplication syndrome.
- Author
-
Jouret G, Egloff M, Landais E, Tassy O, Giuliano F, Karmous-Benailly H, Coutton C, Satre V, Devillard F, Dieterich K, Vieville G, Kuentz P, le Caignec C, Beneteau C, Isidor B, Nizon M, Callier P, Marquet V, Bieth E, Lévy J, Tabet AC, Lyonnet S, Baujat G, Rio M, Cartault F, Scheidecker S, Gouronc A, Schalk A, Jacquin C, Spodenkiewicz M, Angélini C, Pennamen P, Rooryck C, Doco-Fenzy M, and Poirsier C
- Subjects
- Humans, Comparative Genomic Hybridization, Syndrome, Genetic Association Studies, Abnormalities, Multiple genetics, Microcephaly genetics
- Abstract
A small but growing body of scientific literature is emerging about clinical findings in patients with 19p13.3 microdeletion or duplication. Recently, a proximal 19p13.3 microduplication syndrome was described, associated with growth delay, microcephaly, psychomotor delay and dysmorphic features. The aim of our study was to better characterize the syndrome associated with duplications in the proximal 19p13.3 region (prox 19p13.3 dup), and to propose a comprehensive analysis of the underlying genomic mechanism. We report the largest cohort of patients with prox 19p13.3 dup through a collaborative study. We collected 24 new patients with terminal or interstitial 19p13.3 duplication characterized by array-based Comparative Genomic Hybridization (aCGH). We performed mapping, phenotype-genotype correlations analysis, critical region delineation and explored three-dimensional chromatin interactions by analyzing Topologically Associating Domains (TADs). We define a new 377 kb critical region (CR 1) in chr19: 3,116,922-3,494,377, GRCh37, different from the previously described critical region (CR 2). The new 377 kb CR 1 includes a TAD boundary and two enhancers whose common target is PIAS4. We hypothesize that duplications of CR 1 are responsible for tridimensional structural abnormalities by TAD disruption and misregulation of genes essentials for the control of head circumference during development, by breaking down the interactions between enhancers and the corresponding targeted gene., (© 2022 Wiley Periodicals LLC.)
- Published
- 2023
- Full Text
- View/download PDF
5. Impact of a shift in nuchal translucency measurements on the detection rate of first-trimester Down syndrome screening: A population-based study.
- Author
-
Fries N, Salomon LJ, Muller F, Dreux S, Houfflin-Debarge V, Coquel P, Kleinfinger P, and Dommergues M
- Subjects
- Adult, Female, France, Humans, Maternal Age, Nuchal Translucency Measurement statistics & numerical data, Pregnancy, Pregnancy Trimester, First, Quality Assurance, Health Care, Down Syndrome diagnostic imaging, Nuchal Translucency Measurement methods
- Abstract
Objective: To assess the distribution of nuchal translucency (NT) measurements following a national policy without credentialing and its impact on first-trimester Down syndrome screening (DSS) detection rate., Method: All first-trimester DSS data recorded in France (2010-2014) were collected by the laboratories in charge via an Internet database (https://www.bionuqual.org/echo.php). There was no minimal requirement for image quality to allow sonographers to enter the screening process. A subgroup of DSS with complete DS follow-up corresponded to 1614 sonographers. Based on the distribution of maternal age, DS detection rate was calculated and split as a function of the distribution of NT multiple of the median (MoM)., Results: Four thousand nine hundred forty-three sonographers performed 2,337,372 NT measurements. Median NT expressed in MoM was 0.83. Screenings with complete follow-up consisted of 197,417 screenings, in which DSS detection rates were respectively 70.4%, 70.9%, 79.4%, 87.7%, and 79.5% for the following median NT MoM ranges: <0.7, 0.70 to 0.79, 0.80 to 0.89, 0.90 to 0.99, and >0.99 (trend χ = 12.21; P = .0158)., Conclusion: In France, following a policy of quality assessment without standardized credentialing, the distribution of NT measurements did not fit the expected distribution. Down syndrome detection rate was 10% lower in screenings by sonographers with a median NT < 0.80 MoM., (© 2017 John Wiley & Sons, Ltd.)
- Published
- 2018
- Full Text
- View/download PDF
6. [Analysis of prenatal follow-up strategies for trisomy 21 affected pregnancies in France].
- Author
-
Dupont JM, Simon-Bouy B, Zebina A, Pessione F, Royère D, and Doco-Fenzy M
- Subjects
- Adult, Biomarkers blood, Down Syndrome genetics, False Negative Reactions, Female, France, Health Policy, Humans, Maternal Age, Nuchal Translucency Measurement, Practice Guidelines as Topic, Pregnancy, Pregnancy Outcome, Pregnancy Trimester, First, Pregnancy Trimester, Second, Prenatal Diagnosis methods, Sequence Analysis, DNA, Ultrasonography, Prenatal, Down Syndrome diagnosis, Gestational Age, Prenatal Diagnosis statistics & numerical data
- Abstract
Objective: The main objective of this study was to screen the prenatal follow-up of women with live birth trisomy 21 child in order to evaluate the proportion of prenatal screening failure versus cases where the women refused either the screening or the prenatal diagnosis of Down syndrome. This study covers the period of time from 2009 to 2012 when the national prenatal screening policy changed from second to first trimester and allows for a comparative assessment of the nationwide efficiency of the various maternal serum marker based strategies., Method: All authorized cytogenetic laboratories sent required data for all cases of trisomy 21 diagnosed in FRANCE in new-borns (less than 1-year-old) from January 2010 to July 2013., Results: A total of 1253 cases of trisomy 21 were diagnosed before 1 year of age whose mother did not had prenatal diagnosis. For 861 of them, information on the prenatal follow-up was available, with 72% of cases where a prenatal screening was organized either by maternal serum marker or by ultrasound. Results of the screening strategy was positive with maternal serum marker in 28% of cases (calculated risk≥1/250), positive because of abnormal ultrasound in 5% and negative with maternal marker screening (whatever the strategy used) in 67% of cases. Detection rate over the period of the study was 82%, with similar efficiency of first and second trimester strategies (83%) but significantly lower with sequential association of first trimester Nuchal translucency measurement and second trimester serum screening (70%)., Conclusion: Switching from second trimester to first trimester screening strategy, with as many trisomy 21 foetuses diagnosed with half invasive procedures fulfilled national health policy objectives. Analysis of these data gives useful insights to elaborate a future screening policy involving cell-free foetal DNA sequencing., (Copyright © 2017 Elsevier Masson SAS. All rights reserved.)
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.