1. Machine Learning Approach for Local Atmospheric Emission Predictions.
- Author
-
Marongiu, Alessandro, Distefano, Gabriele Giuseppe, Moretti, Marco, Petrosino, Federico, Fossati, Giuseppe, Collalto, Anna Gilia, and Angelino, Elisabetta
- Subjects
MACHINE learning ,EMISSION inventories ,AIR pollution ,PARTICULATE matter ,RANDOM forest algorithms ,URBANIZATION - Abstract
This paper presents a novel machine learning methodology able to extend the results of detailed local emission inventories to larger domains where emission estimates are not available. The first part of this work consists in the development of an emission inventory of elemental carbon (EC), black carbon (BC), organic carbon (OC), and levoglucosan (LG) obtained from the detailed emission estimates available from the Project LIFE PREPAIR for the Po Basin in north Italy. The emissions of these chemical species in combination with particulate primary emissions and gaseous precursors are very important information in source apportionment and in the impact assessment of the different emission sources in air quality. To gain a better understanding of the origins of atmospheric pollution, it is possible to combine measurements with emission estimates for the particulate matter fractions known as EC, BC, OC, and LG. To identify the sources of emissions, it is usual practice to use the ratio of the measured EC, OC, TC (Total Carbon), and LG. The PREPAIR emission estimates and these new calculations are then used to train the Random Forest (RF) algorithm, considering a large array of local variables, such as taxes, the characteristics of urbanization and dwellings, the number of employees detailed for economic activities, occupation levels and land cover. The outcome of the comparison of the predictions of the machine learning implemented model (ML) with the estimates obtained for the same areas by two independent methods, local disaggregation of the national emission inventory and Copernicus Air Modelling Service (CAMS) emissions estimates, is extremely encouraging and confirms it also as a promising approach in terms of effort saving. The implemented modelling approach identifies the most important variables affecting the spatialization of different pollutants in agreement with the main emission source characteristics and is suitable for harmonization of the results of different local emission inventories with national emission reporting. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF