1. Structural and mutational analysis of glycoside hydrolase family 1 Br2 β-glucosidase derived from bovine rumen metagenome
- Author
-
Wilaiwan Kaenying, Takayoshi Tagami, Eukote Suwan, Chariwat Pitsanuwong, Sinchai Chomngam, Masayuki Okuyama, Palangpon Kongsaeree, Atsuo Kimura, and Prachumporn T. Kongsaeree
- Subjects
Glycoside hydrolase family 1 ,Kinetics ,Metagenome ,Mutation ,Rumen ,Structure ,Science (General) ,Q1-390 ,Social sciences (General) ,H1-99 - Abstract
Ruminant animals rely on the activities of β-glucosidases from residential microbes to convert feed fibers into glucose for further metabolic uses. In this report, we determined the structures of Br2, which is a glycoside hydrolase family 1 β-glucosidase from the bovine rumen metagenome. Br2 folds into a classical (β/α)8-TIM barrel domain but displays unique structural features at loop β5→α5 and α-helix 5, resulting in different positive subsites from those of other GH1 enzymes. Br2 exhibited the highest specificity toward laminaritriose, suggesting its involvement in β-glucan hydrolysis in digested feed. We then substituted the residues at subsites +1 and + 2 of Br2 with those of Halothermothrix orenii β-glucosidase. The C170E and C221T mutations provided favorable interactions with glucooligosaccharide substrates at subsite +2, while the A219N mutation probably improved the substrate preference for cellobiose and gentiobiose relative to laminaribiose at subsite +1. The N407Y mutation increased the affinity toward cellooligosaccharides. These results give further insights into the molecular determinants responsible for substrate specificity in GH1 β-glucosidases and may provide a basis for future enzyme engineering applications.
- Published
- 2023
- Full Text
- View/download PDF