9 results on '"Avila-Stagno, J."'
Search Results
2. 489 Effects of the inclusion of linseed and increasing concentrations of glycerol as replacement of corn grain on rumen fermentation, methane production and nutrient disappearance in a rusitec system
- Author
-
Gutierrez, C., primary, Vera, N., additional, Allende, R., additional, Williams, P., additional, and Avila-Stagno, J., additional
- Published
- 2017
- Full Text
- View/download PDF
Catalog
3. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range
- Author
-
Henderson, G., Cox, F., Ganesh, S., Jonker, A., Young, W., Janssen, P. H., Abecia, Leticia, Angarita, E., Aravena, P., Arenas, G. N., Ariza, C., Kelly, W. J., Guan, L. L., Miri, V. H., Hernandez-Sanabria, E., Gomez, A. X. I., Isah, O. A., Ishaq, S., Kim, S.-H., Klieve, A., Kobayashi, Y., Parra, D., Koike, S., Kopecny, J., Kristensen, T. N., O'Neill, B., Krizsan, S. J., LaChance, H., Lachman, M., Lamberson, W. R., Lambie, S., Lassen, J., Muñoz, C., Leahy, S. C., Lee, S. S., Leiber, F., Lewis, E., Ospina, S., Lin, B., Lira, R., Lund, P., Macipe, E., Mamuad, L. L., Murovec, B., Mantovani, H. C., Marcoppido, G. A., Márquez, C., Martin, C., Martínez-Fernández, Gonzalo, Ouwerkerk, D., Martínez, M. E., Mayorga, O. L., McAllister, T. A., McSweeney, C., Newbold, C. Jamie, Mestre, L., Minnee, E., Mitsumori, M., Mizrahi, I., Molina, I., Muenger, A., Nsereko, V., O'Donovan, M., Okunade, S., Pereira, L. G. R., Pinares-Patino, C., Pope, P. B., Bannink, A., Poulsen, M., Rodehutscord, M., Rodriguez, T., Attwood, G. T., Saito, K., Sales, F., Sauer, C., Shingfield, K. J., Shoji, N., Simunek, J., Zambrano, R., Stojanović -Radić, Z., Stres, B., Sun, X., Swartz, J., Ávila, J. M., Tan, Z. L., Tapio, I., Taxis, T. M., Tomkins, N., Ungerfeld, E., Zeitz, J., Valizadeh, R., Van Adrichem, P., van Hamme, J., Van Hoven, W., Waghorn, G., Avila-Stagno, J., Wallace, R. J., Wang, M., Waters, S. M., Keogh, K., Zhou, M., Witzig, M., Wright, A.-D. G., Yamano, H., Yan, T., Yáñez Ruiz, David R., Yeoman, C. J., Zhou, H. W., Zou, C. X., Zunino, P., Barahona, R., Batistotti, M., Bertelsen, M. F., Jami, E., Brown-Kav, A., Carvajal, A. M., Cersosimo, L., Chaves, A. V., Church, J., Clipson, N., Cobos-Peralta, M. A., Cookson, A. L., Cravero, S., Carballo, O. C., Jelincic, J., Crosley, K., Cruz, Gustavo, Cucchi, M. C., De La Barra, R., De Menezes, A. B., Detmann, E., Dieho, K., Dijkstra, J., Dos Reis, W. L. S., Dugan, M. E. R., Kantanen, J., Ebrahimi, S. H., Eythórsdóttir, E., Fon, F. N., Fraga, M., Franco, F., Friedeman, C., Fukuma, N., Gagić , D., Gangnat, I., Grilli, D. J., European Commission, and De Menezes, AB more...
- Subjects
DNA, Bacterial ,Rumen ,animal structures ,Animal Nutrition ,Microorganism ,Article ,03 medical and health sciences ,Species Specificity ,Ruminant ,Butyrivibrio ,Animals ,DNA Barcoding, Taxonomic ,Life Science ,Microbiome ,Phylogeny ,030304 developmental biology ,2. Zero hunger ,0303 health sciences ,Multidisciplinary ,Bacteria ,Geography ,biology ,030306 microbiology ,Host (biology) ,Ecology ,Genetic Variation ,Ruminants ,Sequence Analysis, DNA ,DNA, Protozoan ,15. Life on land ,biology.organism_classification ,Archaea ,Diervoeding ,Diet ,Gastrointestinal Microbiome ,DNA, Archaeal ,Microbial population biology ,13. Climate action ,Host-Pathogen Interactions ,WIAS ,Erratum - Abstract
© 2015 Macmillan Publishers Limited. Ruminant livestock are important sources of human food and global greenhouse gas emissions. Feed degradation and methane formation by ruminants rely on metabolic interactions between rumen microbes and affect ruminant productivity. Rumen and camelid foregut microbial community composition was determined in 742 samples from 32 animal species and 35 countries, to estimate if this was influenced by diet, host species, or geography. Similar bacteria and archaea dominated in nearly all samples, while protozoal communities were more variable. The dominant bacteria are poorly characterised, but the methanogenic archaea are better known and highly conserved across the world. This universality and limited diversity could make it possible to mitigate methane emissions by developing strategies that target the few dominant methanogens. Differences in microbial community compositions were predominantly attributable to diet, with the host being less influential. There were few strong co-occurrence patterns between microbes, suggesting that major metabolic interactions are non-selective rather than specific., We thank Ron Ronimus, Paul Newton, and Christina Moon for reading and commenting on the manuscript. We thank all who provided assistance that allowed Global Rumen Census collaborators to supply samples and metadata (Supplemental Text 1). AgResearch was funded by the New Zealand Government as part of its support for the Global Research Alliance on Agricultural Greenhouse Gases. The following funding sources allowed Global Rumen Census collaborators to supply samples and metadata, listed with the primary contact(s) for each funding source: Agencia Nacional de Investigación e Innovación, Martín Fraga; Alberta Livestock and Meat Agency, Canada, Tim A. McAllister; Area de Ciencia y Técnica, Universidad Juan A Maza (Resolución Proy. N° 508/2012), Diego Javier Grilli; Canada British Columbia Ranching Task Force Funding Initiative, John Church; CNPq, Hilário Cuquetto Mantovani, Luiz Gustavo Ribeiro Pereira; FAPEMIG, Hilário Cuquetto Mantovani; FAPEMIG, PECUS RumenGases, Luiz Gustavo Ribeiro Pereira; Cooperative Research Program for Agriculture Science & Technology Development (project number PJ010906), Rural Development Administration, Republic of Korea, Sang-Suk Lee; Dutch Dairy Board & Product Board Animal Feed, André Bannink, Kasper Dieho, Jan Dijkstra; Ferdowsi University of Mashhad, Vahideh Heidarian Miri; Finnish Ministry of Agriculture and Forestry, Ilma Tapio; Instituto Nacional de Tecnología Agropecuaria, Argentina (Project PNBIO1431044), Silvio Cravero, María Cerón Cucchi; Irish Department of Agriculture, Fisheries and Food, Alexandre B. De Menezes; Meat & Livestock Australia; and Department of Agriculture, Fisheries & Forestry (Australian Government), Chris McSweeney; Ministerio de Agricultura y desarrollo sostenible (Colombia), Olga Lucía Mayorga; Montana Agricultural Experiment Station project (MONB00113), Carl Yeoman; Multistate project W-3177 Enhancing the competitiveness of US beef (MONB00195), Carl Yeoman; NSW Stud Merino Breeders’ Association, Alexandre Vieira Chaves; Queensland Enteric Methane Hub, Diane Ouwerkerk; RuminOmics, Jan Kopecny, Ilma Tapio; Rural and Environment Science and Analytical Services Division (RESAS) of the Scottish Government and the Technology Strategy Board, UK, R. John Wallace; Science Foundation Ireland (09/RFP/GEN2447), Sinead Waters; Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación, Mario A. Cobos-Peralta; Slovenian Research Agency (project number J1-6732 and P4-0097), Blaz Stres; Strategic Priority Research Program, Climate Change: Carbon Budget and Relevant Issues (Grant No.XDA05020700), ZhiLiang Tan; The European Research Commission Starting Grant Fellowship (336355—MicroDE), Phil B. Pope; The Independent Danish Research Council (project number 4002-00036), Torsten Nygaard Kristensen; and The Independent Danish Research Council (Technology and Production, project number 11-105913), Jan Lassen. These funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. more...
- Published
- 2015
- Full Text
- View/download PDF
4. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range
- Author
-
European Commission, Henderson, G., Cox, F., Ganesh, S., Jonker, A., Young, W., Janssen, P. H., Abecia, Leticia, Angarita, E., Aravena, P., Arenas, G. N., Ariza, C., Zhou, M., Witzig, M., Wright, A.-D. G., Yamano, H., Yan, T., Yáñez Ruiz, David R., Yeoman, C. J., Zhou, H. W., Zou, C. X., Zunino, P., Kelly, W. J., Barahona, R., Batistotti, M., Bertelsen, M. F., Jami, E., Brown-Kav, A., Carvajal, A. M., Cersosimo, L., Chaves, A. V., Church, J., Clipson, N., Guan, L. L., Cobos-Peralta, M. A., Cookson, A. L., Cravero, S., Carballo, O. C., Jelincic, J., Crosley, K., Cruz, Gustavo, Cucchi, M. C., De La Barra, R., De Menezes, A. B., Miri, V. H., Detmann, E., Dieho, K., Dijkstra, J., Dos Reis, W. L. S., Dugan, M. E. R., Kantanen, J., Ebrahimi, S. H., Eythórsdóttir, E., Fon, F. N., Fraga, M., Hernandez-Sanabria, E., Franco, F., Friedeman, C., Fukuma, N., Gagić , D., Gangnat, I., Grilli, D. J., Gomez, A. X. I., Isah, O. A., Ishaq, S., Kim, S.-H., Klieve, A., Kobayashi, Y., Parra, D., Koike, S., Kopecny, J., Kristensen, T. N., O'Neill, B., Krizsan, S. J., LaChance, H., Lachman, M., Lamberson, W. R., Lambie, S., Lassen, J., Muñoz, C., Leahy, S. C., Lee, S. S., Leiber, F., Lewis, E., Ospina, S., Lin, B., Lira, R., Lund, P., Macipe, E., Mamuad, L. L., Murovec, B., Mantovani, H. C., Marcoppido, G. A., Márquez, C., Martín, C., Martínez-Fernández, Gonzalo, Ouwerkerk, D., Martínez, M. E., Mayorga, O. L., McAllister, T. A., McSweeney, C., Newbold, C. Jamie, Mestre, L., Minnee, E., Mitsumori, M., Mizrahi, I., Molina, I., Muenger, A., Nsereko, V., O'Donovan, M., Okunade, S., Pereira, L. G. R., Pinares-Patino, C., Pope, P. B., Bannink, A., Poulsen, M., Rodehutscord, M., Rodríguez, T., Attwood, G. T., Saito, K., Sales, F., Sauer, C., Shingfield, K. J., Shoji, N., Simunek, J., Zambrano, R., Stojanović -Radić, Z., Stres, B., Sun, X., Swartz, J., Ávila, J. M., Tan, Z. L., Tapio, I., Taxis, T. M., Tomkins, N., Ungerfeld, E., Zeitz, J., Valizadeh, R., Van Adrichem, P., van Hamme, J., Van Hoven, W., Waghorn, G., Avila-Stagno, J., Wallace, R. J., Wang, M., Waters, S. M., Keogh, K., European Commission, Henderson, G., Cox, F., Ganesh, S., Jonker, A., Young, W., Janssen, P. H., Abecia, Leticia, Angarita, E., Aravena, P., Arenas, G. N., Ariza, C., Zhou, M., Witzig, M., Wright, A.-D. G., Yamano, H., Yan, T., Yáñez Ruiz, David R., Yeoman, C. J., Zhou, H. W., Zou, C. X., Zunino, P., Kelly, W. J., Barahona, R., Batistotti, M., Bertelsen, M. F., Jami, E., Brown-Kav, A., Carvajal, A. M., Cersosimo, L., Chaves, A. V., Church, J., Clipson, N., Guan, L. L., Cobos-Peralta, M. A., Cookson, A. L., Cravero, S., Carballo, O. C., Jelincic, J., Crosley, K., Cruz, Gustavo, Cucchi, M. C., De La Barra, R., De Menezes, A. B., Miri, V. H., Detmann, E., Dieho, K., Dijkstra, J., Dos Reis, W. L. S., Dugan, M. E. R., Kantanen, J., Ebrahimi, S. H., Eythórsdóttir, E., Fon, F. N., Fraga, M., Hernandez-Sanabria, E., Franco, F., Friedeman, C., Fukuma, N., Gagić , D., Gangnat, I., Grilli, D. J., Gomez, A. X. I., Isah, O. A., Ishaq, S., Kim, S.-H., Klieve, A., Kobayashi, Y., Parra, D., Koike, S., Kopecny, J., Kristensen, T. N., O'Neill, B., Krizsan, S. J., LaChance, H., Lachman, M., Lamberson, W. R., Lambie, S., Lassen, J., Muñoz, C., Leahy, S. C., Lee, S. S., Leiber, F., Lewis, E., Ospina, S., Lin, B., Lira, R., Lund, P., Macipe, E., Mamuad, L. L., Murovec, B., Mantovani, H. C., Marcoppido, G. A., Márquez, C., Martín, C., Martínez-Fernández, Gonzalo, Ouwerkerk, D., Martínez, M. E., Mayorga, O. L., McAllister, T. A., McSweeney, C., Newbold, C. Jamie, Mestre, L., Minnee, E., Mitsumori, M., Mizrahi, I., Molina, I., Muenger, A., Nsereko, V., O'Donovan, M., Okunade, S., Pereira, L. G. R., Pinares-Patino, C., Pope, P. B., Bannink, A., Poulsen, M., Rodehutscord, M., Rodríguez, T., Attwood, G. T., Saito, K., Sales, F., Sauer, C., Shingfield, K. J., Shoji, N., Simunek, J., Zambrano, R., Stojanović -Radić, Z., Stres, B., Sun, X., Swartz, J., Ávila, J. M., Tan, Z. L., Tapio, I., Taxis, T. M., Tomkins, N., Ungerfeld, E., Zeitz, J., Valizadeh, R., Van Adrichem, P., van Hamme, J., Van Hoven, W., Waghorn, G., Avila-Stagno, J., Wallace, R. J., Wang, M., Waters, S. M., and Keogh, K. more...
- Abstract
© 2015 Macmillan Publishers Limited. Ruminant livestock are important sources of human food and global greenhouse gas emissions. Feed degradation and methane formation by ruminants rely on metabolic interactions between rumen microbes and affect ruminant productivity. Rumen and camelid foregut microbial community composition was determined in 742 samples from 32 animal species and 35 countries, to estimate if this was influenced by diet, host species, or geography. Similar bacteria and archaea dominated in nearly all samples, while protozoal communities were more variable. The dominant bacteria are poorly characterised, but the methanogenic archaea are better known and highly conserved across the world. This universality and limited diversity could make it possible to mitigate methane emissions by developing strategies that target the few dominant methanogens. Differences in microbial community compositions were predominantly attributable to diet, with the host being less influential. There were few strong co-occurrence patterns between microbes, suggesting that major metabolic interactions are non-selective rather than specific. more...
- Published
- 2015
5. Effects of replacing rolled barley grain with wheat dry distillers' grains with solubles in Merino sheep rations
- Author
-
Graham, A. S., primary, Jonas, E., additional, Tanner, A., additional, Avila-Stagno, J., additional, Bush, R. D., additional, and Chaves, A. V., additional
- Published
- 2013
- Full Text
- View/download PDF
6. Effects of replacing barley grain with wheat dry distillers' grains on growth performance, eating behavior, and subcutaneous fatty acid profiles of lambs
- Author
-
Avila-Stagno, J., primary, Chaves, A. V., additional, Graham, A. S., additional, and McAllister, T. A., additional
- Published
- 2013
- Full Text
- View/download PDF
7. Effects of increasing concentrations of glycerol in concentrate diets on nutrient digestibility, methane emissions, growth, fatty acid profiles, and carcass traits of lambs1
- Author
-
Avila-Stagno, J., primary, Chaves, A. V., additional, He, M. L., additional, Harstad, O. M., additional, Beauchemin, K. A., additional, McGinn, S. M., additional, and McAllister, T. A., additional
- Published
- 2013
- Full Text
- View/download PDF
8. Effects of the inclusion of linseed and increasing concentrations of glycerol as replacement of corn grain on rumen fermentation, methane production and nutrient disappearance in a rusitec system.
- Author
-
Gutierrez, C., Vera, N., Allende, R., Williams, P., and Avila-Stagno, J.
- Subjects
FLAXSEED ,ANIMAL nutrition ,FARM manure in methane production - Abstract
The aim of the study was to assess the effects of using linseed and increasing concentrations of glycerol in a forage diet supplemented with corn grain on nutrient disappearance, methane (CH4) production and fermentation parameters in a Rusitec fermentation system. The experimental diets were: control, (70% ryegrass/clover mixed hay, 30% corn grain); positive control (70% hay, 15% corn grain, 15% linseed); 5% glycerol (70% hay, 10% corn grain, 15% linseed, 5% glycerol); 10% glycerol (70% hay, 5% corn grain, 15% linseed, 10% glycerol). The experiment was a complete randomized design with the four dietary treatments with 2 replicates in an 8 fermenter Rusitec apparatus. Incubations were run twice during 15d. The first 10d were used for fermenter adaptation, followed by 5d of sampling (days 11 to 15). The individual fermenter was the experimental unit. The model included the fixed effects of diet, day and diet/day interactions with the day of sampling from each fermenter treated as a repeated measure. Total VFA concentrations in effluent were increased (P = 0.005) in the glycerol added diets as compared to positive control. Acetate concentrations were reduced with increasing glycerol concentration in diets whereas propionate increased with linseed inclusion. Increasing concentrations of glycerol resulted in further increased propionate concentrations (P < 0.001), thus leading to important reductions in the acetate/propionate ratio. However, CH
4 production (mgCH4 /g DM digested) was reduced by linseed inclusion in the diet (P = 0.004) but not by increasing concentrations of glycerol in the diet. Ammonia nitrogen was increased in all linseed supplemented diets (P < 0.001). Total DM and non-fibrous carbohydrates in vitro disappearance were not affected by dietary treatments (P = 0.411). However, CP and EE disappearance were increased in linseed supplemented diets (P < 0.001) but not further affected by glycerol inclusion. Disappearance of NDF was increased only in the positive control diet as compared to control diet (P = 0.0185). In conclusion, the use of linseed as replacement of corn grain reduces CH4 production in a Rusitec system but increases ammonia nitrogen. Increased propionate concentrations in glycerol supplemented fermenters does not result in reduced CH4 production despite increases in propionate concentrations. Linseed inclusion increases in vitro disappearance of CP and EE without affecting total DM disappearance. [ABSTRACT FROM AUTHOR] more...- Published
- 2017
- Full Text
- View/download PDF
9. Inclusion of glycerol in forage diets increases methane production in a rumen simulation technique system.
- Author
-
Avila-Stagno J, Chaves AV, Ribeiro GO Jr, Ungerfeld EM, and McAllister TA
- Subjects
- Animals, Bromus chemistry, Bromus microbiology, Cattle, Dietary Fiber metabolism, Fatty Acids, Volatile metabolism, Fermentation, Gastrointestinal Contents chemistry, Gastrointestinal Contents enzymology, Gastrointestinal Contents microbiology, Glycerol adverse effects, Gram-Negative Bacteria growth & development, Gram-Negative Bacteria isolation & purification, Gram-Negative Bacteria metabolism, Gram-Positive Bacteria growth & development, Gram-Positive Bacteria isolation & purification, Gram-Positive Bacteria metabolism, Greenhouse Effect prevention & control, Rumen microbiology, Saliva chemistry, Saliva enzymology, Silage analysis, Silage microbiology, Zea mays chemistry, Zea mays microbiology, Digestion, Glycerol metabolism, Herbivory, Methane metabolism, Models, Biological, Rumen metabolism, Up-Regulation
- Abstract
We hypothesised that the inclusion of glycerol in the forage diets of ruminants would increase the proportion of propionate produced and thereby decrease in vitro CH₄ production. This hypothesis was examined in the present study using a semi-continuous fermentation system (rumen simulation technique) fed a brome hay (8·5 g) and maize silage (1·5 g) diet with increasing concentrations (0, 50, 100 and 150 g/kg DM) of glycerol substituted for maize silage. Glycerol linearly increased total volatile fatty acids production (P<0·001). Acetate production was quadratically affected (P=0·023) and propionate and butyrate production was linearly increased (P<0·001). Glycerol linearly increased (P=0·011) DM disappearance from hay and silage. Crude protein disappearance from hay was not affected (P=0·789), but that from silage was linearly increased (P<0·001) with increasing glycerol concentrations. Neutral-detergent fibre (P=0·040) and acid-detergent fibre (P=0·031) disappearance from hay and silage was linearly increased by glycerol. Total gas production tended to increase linearly (P=0·061) and CH₄ concentration in gas was linearly increased (P<0·001) by glycerol, resulting in a linear increase (P<0·001) in mg CH₄/g DM digested. Our hypothesis was rejected as increasing concentrations of glycerol in a forage diet linearly increased CH₄ production in semi-continuous fermenters, despite the increases in the concentrations of propionate. In conclusion, this apparent discrepancy is due to the more reduced state of glycerol when compared with carbohydrates, which implies that there is no net incorporation of electrons when glycerol is metabolised to propionate. more...
- Published
- 2014
- Full Text
- View/download PDF
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.