1. Evolution goes GAGA: GAGA binding proteins across kingdoms.
- Author
-
Berger, Nathalie and Dubreucq, Bertrand
- Subjects
DROSOPHILA melanogaster ,AMINO acid sequence ,POST-translational modification ,GENE expression ,HISTONES ,ANIMALS ,MOLECULAR structure of chromatin - Abstract
Abstract: Chromatin-associated proteins (CAP) play a crucial role in the regulation of gene expression and development in higher organisms. They are involved in the control of chromatin structure and dynamics. CAP have been extensively studied over the past years and are classified into two major groups: enzymes that modify histone stability and organization by post-translational modification of histone N-Terminal tails; and proteins that use ATP hydrolysis to modify chromatin structure. All of these proteins show a relatively high degree of sequence conservation across the animal and plant kingdoms. The essential Drosophila melanogaster GAGA factor (dGAF) interacts with these two types of CAP to regulate homeobox genes and thus contributes to a wide range of developmental events. Surprisingly, however, it is not conserved in plants. In this review, following an overview of fly GAF functions, we discuss the role of plant BBR/BPC proteins. These appear to functionally converge with dGAF despite a completely divergent amino acid sequence. Some suggestions are given for further investigation into the function of BPC proteins in plants. [Copyright &y& Elsevier]
- Published
- 2012
- Full Text
- View/download PDF