1. A Resolution Independent Neural Operator
- Author
-
Bahmani, Bahador, Goswami, Somdatta, Kevrekidis, Ioannis G., and Shields, Michael D.
- Subjects
Computer Science - Machine Learning ,Computer Science - Computational Engineering, Finance, and Science ,Physics - Computational Physics ,Statistics - Machine Learning - Abstract
The Deep Operator Network (DeepONet) is a powerful neural operator architecture that uses two neural networks to map between infinite-dimensional function spaces. This architecture allows for the evaluation of the solution field at any location within the domain but requires input functions to be discretized at identical locations, limiting practical applications. We introduce a general framework for operator learning from input-output data with arbitrary sensor locations and counts. This begins by introducing a resolution-independent DeepONet (RI-DeepONet), which handles input functions discretized arbitrarily but sufficiently finely. To achieve this, we propose two dictionary learning algorithms that adaptively learn continuous basis functions, parameterized as implicit neural representations (INRs), from correlated signals on arbitrary point clouds. These basis functions project input function data onto a finite-dimensional embedding space, making it compatible with DeepONet without architectural changes. We specifically use sinusoidal representation networks (SIRENs) as trainable INR basis functions. Similarly, the dictionary learning algorithms identify basis functions for output data, defining a new neural operator architecture: the Resolution Independent Neural Operator (RINO). In RINO, the operator learning task reduces to mapping coefficients of input basis functions to output basis functions. We demonstrate RINO's robustness and applicability in handling arbitrarily sampled input and output functions during both training and inference through several numerical examples.
- Published
- 2024