1. A Realistic Face-to-Face Conversation System based on Deep Neural Networks
- Author
-
Chen, Zezhou, Liu, Zhaoxiang, Hu, Huan, Bai, Jinqiang, Lian, Shiguo, Shi, Fuyuan, and Wang, Kai
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Sound ,Electrical Engineering and Systems Science - Audio and Speech Processing ,Electrical Engineering and Systems Science - Image and Video Processing - Abstract
To improve the experiences of face-to-face conversation with avatar, this paper presents a novel conversation system. It is composed of two sequence-to-sequence models respectively for listening and speaking and a Generative Adversarial Network (GAN) based realistic avatar synthesizer. The models exploit the facial action and head pose to learn natural human reactions. Based on the models' output, the synthesizer uses the Pixel2Pixel model to generate realistic facial images. To show the improvement of our system, we use a 3D model based avatar driving scheme as a reference. We train and evaluate our neural networks with the data from ESPN shows. Experimental results show that our conversation system can generate natural facial reactions and realistic facial images., Comment: Accepted to ICCV 2019 workshop
- Published
- 2019