1. Global destabilization of drift-tearing mode with coupling to discretized electron drift-wave instability
- Author
-
Bao, J., Zhang, W. L., Lin, Z., Cai, H. S., Liu, D. J., Chen, H. T., Dong, C., Cao, J. T., and Li, D.
- Subjects
Physics - Plasma Physics - Abstract
The global linear behaviors of 2/1 DTM in the collisional regime are investigated based on a concisely resistive drift-MHD model. Besides DTM, extra normal modes including EDW and SAW are coupled together and destabilized in different parameter regimes by considering resistivity in this system. The EVP approach is applied for solving the eigenstate spectra with the distribution of all unstable solutions. It is found that in the small EDD frequency (omega_*e) regime, DTM growth rate agrees well with local theory that is reduced with increasing omega_*e. However, when omega_*e exceeds a critical threshold omega_*crit, the strongly linear coupling between DTM and other discretized EDW instabilities happens so that the free energies from current and pressure channels can be released together and thus enhance the DTM, of which growth rate increases with increasing omega_*e and deviates from local theory results qualitatively. Correspondingly, a cross-scale mode structure forms with mixed polarization, namely, phi perturbation is dominated by electrostatic polarized short-wavelength oscillation as EDW instability character, and A_para perturbation remains typical tearing mode solution of Alfvenic polarized macroscopic structure. Within omega_*e > omega_*crit, the additional IDD causes phi oscillating structure to shift towards small density gradient domain, which cancels the extra drive from ion channel and thus DTM growth rate is insensitive to IDD frequency. Compared to EDD effects, the IDD effect alone with zero-omega_*e only leads to the stabilization of RTM that shows agreements between global simulation and local theory, which is no longer the condition for DTM regime. These results are useful for clarifying the DTM global properties with underlying physics mechanisms, which occurs in the regime of omega_*e >> gamma_c that is relevant to nowadays tokamak discharges with hot plasmas., Comment: 23 pages, 15 figues
- Published
- 2024